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Introduction to broadcast channels

• Multiple antennas add tremendous value to point to point systems

• Research shifted recently to the role of multiple antennas in

pointmultiuser systems

– (Uplink) Multiple Access (MAC)

– (Downlink) Broadcast (BC)

• Broadcast scenarios (point to multi-point) are especially important

because downlink scheduling is the major bottleneck for broadband

wireless networks
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Three main questions in a broadcast scenario

Q1) Quantify the maximum sum rate possible to all users

A1) Capacity region is achieved using dirty paper coding (DPC) (Caire

and Shamai ’02, Viswanath and Tse ’02, Vishwanath et al. ’02, Yu and Cioffi ’02,

Weingarten et. al. ’06)

Q2) Quantify the asymptotic behavior in regimes of interest

A2) Regimes include

• Large number of users (Masoud and Hassibi ’05,)

• Large number of Antennas (Masoud ’05)

• High and low SNR (Jindal & Goldsmith )
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Q3) How do scheduling schemes performs under various non-idealities

A3) (i) Time correlation (Kountouris and Gesbert ’05)

(ii) Frequency correlation (Fakhereddin et. al. ’06)

(iii) Channel estimation error (Vikali et. al. ’06)

(iv) Spatial correlation (D. Park and S Y. Park ’05, Al-Naffouri et. al. ’06)
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Group broadcast scenario

• Broadcast problem: users interested in independent information

• Group Broadcast: Groups of users, each group of users interested in

the same information

– e.g. DAB/DVB with limited shows; users classified according to

shows they are interested in

– Single group: multicast problem (Khitsi et. al. 06, Jindal and Luo 06)

– Multiple-groups each consisting of one user: broadcast problem

• Would like to answer Q2): Asymptotic behavior in various regimes

(large number of users and antennas)
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System model

• Base station equipped with M antennas

• n users each equipped with a single receive antenna.

• n single-antenna users with received signal

yi = h∗i s + νi

– Input satisfies E[s∗s] ≤ P

– Noise is white Gaussian ν ∼ CN(0, IM )

– User channels are independent and distributed as CN(0, IM )

• Users are partitioned into K groups of n
K

users each; each group is

interested in the same data.
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Group broadcast capacity: Formal expression

• When there is one user only

Cone user = E max
B≥0 Tr(B)≤P

log det
�
1 + ‖h‖2B

�
• Single group broadcast

Csingle group = E maxB≥0 Tr(B)≤P mini log det
�
1 + ‖hi‖2B

�
• Group broadcast eventually limited by the worst user
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Group broadcast capacity: Formal expression (2)

• Multiple groups broadcast: K power matrices B1, . . . , BK , one for

each group.

• Matrices should maximize sum-rate under total power constraint

Cmultiplegroups = E max
Bk≥0

PK
k=1 Tr(Bk)≤P

log det

 
1 +

KX
k=1

‖hk‖2Bk

!
• With K user groups, we need to take care of the “worst” user of

each group
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Our Approach

• CGB is difficult to calculate, so find the asymptotics

• Study behavior of CGB for large number of users n and antennas M

– Large n and fixed M

– Large M and fixed n

– Large M and n with M = βn

– Large M and n with M = log n
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Capacity bounding techniques (1)

Upper bounds

1. K times rate of one group

CGB ≤ KCsingle group

= K log(1 + max
B≥0 Tr(B)≤P

min
i
‖hi‖2B)

2. MAC-BC duality

• Maximum sum rate for K users, chosen one from each group

CK users = max

bk ≥ 0PK
k=1 bk = P

log det

 
I +

KX
k=1

hikbkh∗ik

!
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• Rate has to appeal to every user in every group

CK users ≤ min
hi1

· · ·min
hiK

max

bk ≥ 0PK
k=1 bk = P

log det

 
I +

KX
k=1

hikbkh∗ik

!

• Get rid of the determinant using AM-GM inequality

det(A) ≤
�

tr(A)
M

�M

to write

CGB ≤ M log

�
1 +

P

M
max

k
min
hi1

· · ·min
hiK

{‖hi1‖2, · · · , ‖hiK‖2}
�
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Capacity bounding techniques (2)

Lower Bounds

1. Time sharing

CGB ≥ 1

K

KX
k=1

log det

�
1 + max

Bk≥0 Tr(Bk)=P
min
hik

‖hik‖Bk

�
2. Treating interference as noise

CGB ≥ K log

 
1
K

P
M

mini ‖hi‖2
1 + K−1

K
P
M

mini ‖hi‖2

!

Need to study scaling of the weighted max−min norm

max
B≥0 Tr(B)=P

min
i
‖hi‖2B

12



'

&

$

%

Our Approach

• CGB is difficult to calculate, so find the asymptotics

• Obtain upper and lower bounds on CGB ; bounds depend on the

max-min weighted norm

max
B≥0 Tr(B)=P

min
i
‖hi‖2B

• Find upper and lower bounds on the max-min in terms of the hi’s
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Bounds on the max-min weighted Euclidean norm

Here we obtain upper and lower bounds on the weighted Euclidean norm

for fixed M and n

Lower Bounds

1. max-min norm is greater than min norm

max
Tr(B)=P

min
i
‖hi‖2B ≥ P

M
min

i
‖hi‖2

2. hi belongs to a finite set {h1, · · · , h n
K
}

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≥ P

n
K

min
i
‖hi‖2

So

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≥ P

min{M, n
K
} min

i
‖hi‖2
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3. Diagonal values and eigenvalues: Define H = [h1 · · ·h n
K

], then

λmin(H∗H) ≤ min
i
‖hi‖2 ≤ λmax(H∗H)

Upper Bounds

1. max-min is less than min-max

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≤ P min

i
‖hi‖2B

2. Replace minimization with averaging (Jindal and Luo ’06)

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≤ max

B

1
n
K

n
KX

i=1

‖hi‖2B

≤ Pλmax(H∗H)

Study boils down to studying the scaling of

1) min norm mini ‖hi‖2 2) eigenvalues of H∗H
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Our Approach

• CGB is difficult to calculate, so find the asymptotics

• Obtain upper and lower bounds on CGB ; bounds depend on the

max-min weighted norm

max
B≥0 Tr(B)=P

min
i
‖hi‖2B

• Find upper and lower bounds on the max-min in terms of the hi’s

• Find the asymptotics of mini ‖hi‖2
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Scaling of the Euclidean norm

In the rest of the presentation, we study the scaling of the minimum

Euclidean norm mini ‖hi‖2 for

• Large n and fixed M

• Large M and fixed n

• Large M and n with M = βn

• Large M and n with M = log n
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Scaling of the minimum of iid variables

• Let x1, x2, · · · , xn be nonnegative iid r. v.’s with CDF F (x), and CF

φ(x).

• Need to find scaling law of xmin(n) = {x1, x2, · · · , xn}

• CDF of the mimimum is given by

Fmin(x) = 1− (1− F (x))n

• Can show n
1
i0 xmin(n) converges in distribution to y with CDF

Fy(y) = 1− exp

�
−F (i0)(0)

i0!
yi0

�
• We thus say that

xmin converges to E

n
1
i0
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where E is the expectation that arises from the distribution (1)

E =

Z ∞

0

exp

�
−F (i0)(0)

i0!
xi0

�
=

Ci0

F (i0)(0)
1
i0

Ci0 =
Γ( 1

i0
)(i0!)

1
i0

i0

• The constant i0 is the least i0 for which F (i0)(0) 6= 0

• Can find i0 and F (i0)(0) using initial value theorem

limx→0 F (i0)(x) = lims→∞ si0φ(s)

• Note that there is no restriction on distribution F (x)
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Scaling for large n, fixed M

• Scaling law for minhi ‖hi‖2, hi ∼ CN(0, R).

• CDF of ‖hi‖2 will have different forms depending on eigenvalues of R

• Characteristic function given by

φ(s) =

MY
l=1

1

1 + λls

• It is easy to see that

F (i0)(0) = lim
s→∞

siφ(s) =

8<: 0 for i < M

1
det(R)

for i = M

• We thus conclude that

mini ‖hi‖2 scales as CM det(R)
1

M 1

n
1

M
CM =

Γ( 1
M

)(M !)
1

M

M
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Scaling for large M , fixed n

• By the law of large numbers

min
i
‖hi‖2 = M

which implies

maxmin ‖hi‖2B ≤ PM

• Applying the law of large numbers to

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≥ P

min{M, n
K
} min

i
‖hi‖

implies

maxmin ‖hi‖2B ≥ P K
n

M
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Scaling for large M and n, M = βn

We consider the regime: M, n →∞ with M = βn

• Use λmin(H∗
i Hi) ≤ mini ‖hi‖2 to show

min
i

‖hi‖2
M

≥ (1−
p

Kβ)2

which implies

maxmin
‖hi‖2B

M
≥ P (1−√Kβ)2

• Use max mini ‖hi‖2B ≤ P K
n

λmax(H∗H) to show

maxmin
‖hi‖2B

M
≤ P (1 + 1√

Kβ
)2
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Behavior of the min Euclidean Norm

The behavior of mini ‖hi‖2 looks like

Regime Asymptotic Value Method

large n
Γ( 1

M
)(M !)

1
M

M
1

n
1

M
min of iid variables

large M M Law of large numbers

M = β n
K

≥ (1−√Kβ)2

≤ (1 +
√

Kβ)2
Random Matrix theory

M = log n H ∈ [1− εl, 1] ε ' .8414 Chernof Bound
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Behavior of the max min Euclidean Norm

The behavior of maxB mini ‖hi‖2 looks like

Regime Lower Bound Upper Bound

large n CM
M

1

n
1

M
CM

1

n
1

M

large M P K
n

M PM

M = β n
K

P (1−√Kβ)2 P (1 + 1√
Kβ

)2

M = log n PH ,H ∈ [1− εl, 1] ε ' .8414 constant

CM =
Γ( 1

M
)(M !)

1
M

M
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GB scaling for large n, fixed M

• Group broadcast capacity scales as

CGB = αPCM
K

1
M

n
1

M

where
1

M
≤ α ≤ 1

• For spatially correlated case, the capacity incurs a det(R)
1

M hit

CGB = α det(R)
1

M PCM
K

1
M

n
1

M

• Unfortunate result: sum-rate decreases with the number of users.

• Counter this: increase the resources (i.e., number of antennas M).
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GB scaling for large M , fixed n

• Upper bound: K times rate of single group

CGB ≤ K max
B≥0 Tr(B)≤P

log(1 + min
i
‖hi‖2B)

CGB ≤ K log(1 + PM) (law of large numbers)

• Lower bound: Use time sharing

CGB ≥ log(1 + max
B≥0 Tr(B)≤P

min
i
‖hi‖B)

CGB ≥ log(1 + P K
n

M)
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GB scaling with M and n, M = βn

• Number of users and antennas grow to infinity while their ratio

remains constant M
n

= β
K

.

• Lower bound: Use time sharing

C ≥ log
�
1 + P (1−√Kβ)2

�
• To obtain an upper bound, we start with the bound

CGB ≤ K log(1 + max
B≥0 Tr(B)≤P

min
i
‖hi‖2B)

to show

CGB ≤ K log(1 + P (1 + 1√
β
)2)

• If we allow the number of antennas to grow linearly with the number

of users, we can guarantee a constant sum rate.
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Can we have constant rate with sublinear growth?

• But is it still possible to do so without straining the resources as

much?

• We showed that for large n

C = αPCM
K

1
M

n
1

M

CM

M
' 1

= αP
K

1
M

n
1

M

• To guarantee a constant rate, intuition requires to set M = log n
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GB scaling with M and n, M = log n

• Use the Chernof bound, we show that

lim
M=log n,n→∞

min
i

‖hi‖2
M

= H ∈ [1− εl, 1] w.p.1

where εl ' .8414.

• Capacity is lower-bounded by a constant

C ≥ log(1 + PH) (1)

• Capacity is also upper bounded by a constant because it is for

M = βn
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Conclusion

• Studied the scaling law of the group broadcast problem

• Capacity decreases as n−
1

M with number of users

• Can guarantee a constant rate if we allow M to grow as log n

• As a by-product (or a prerequisite), we studied the scaling of

– Minimum Euclidean norm mini ‖hi‖2

– Max min Euclidean norm maxB mini ‖hi‖2B

in various regimes

• Several results apply for general distributions on hi
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