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Quadratic Forms in Gaussian Variables

• Gaussian variables play a very important role in statistics, signal

processing, and communications

• Quadratic forms in Gaussian random variables are of particular

importance

• Let A be a Hermitian matrix of size M and consider the random

quadratic form

Y = ‖H‖2A ∆
= H∗AH (1)

where H is a white cicularly symmetric Gaussian random variable,

i.e. H i.e. H ∼ CN (0, R).

• Without loss of generality, we can assume H white as we can absorb

the correlation into the weight matrix.
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Evaluating the CDF the Normal Way is Difficult

• Consider the random Hermitian quadratic form

Y = ‖H‖2A
The CDF of Y is defined by

FY (y) = P {Y ≤ y} (2)

=

Z
A

p(H)dH (3)

where A is area in M multidimensional H plane defined by the

inequality

‖H‖2A ≤ y (4)

• Such an integral would in general be very difficult to evaluate.
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An Alternative Way to Evaluating the CDF

• An alternative way to do so is to express the inequality that appears

in (4) as

y − ‖H‖2A ≥ 0

So, the CDF takes the form

FY (y) =
1

2πM

Z
e−H∗Hu(y − ‖H‖2A)dH

The constraint appears in the integrand and not in the integration

limits

• Difficult to deal with the unit step. So replace it with its Fourier

transform

u(x) =
1

2π

Z ∞

−∞

ex(jω+β)

jω + β
dω

which is valid for any β > 0
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The CDF as a 1-D Integral

• CDF can be written as M + 1 integral

FY (y) =
1

2πM+1

Z
dω

ey(jω+β)

jω + β

Z
dHe−H∗(I+A(jω+β))HdH (5)

• By examining (5), we note that inner integral looks like a Gaussian

integral. Intuition suggests that this integral can be written as

1

πM

Z
e−H∗(I+A(jω+β))HdH =

1

det(I + A(jω + β))
(6)

• We are left with

FY (y) =
1

2π

Z ∞

−∞

ey(jω+β)

jω + β

MY
i=1

1

1 + λi(x)(jω + β)
dω (7)
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The CDF in Closed Form

• Use partial fraction expansion and contour integration to write CDF

in closed form

FY (y) = u(y) +

MX
l=1

λM+1
iQ

l6=i(λi − λl)

1

|λi|e
− y

λl u(
y

λl
)

• Note that this result applies irrespective of the correlation of H and

irrespective of the weight matrix A
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Dealing with the Nonzero Mean Problem

• In the nonzero mean problem, we have the quadratic form

Y = ‖H − a‖2A

• We can evaluate the CDF up to a 1-D integral

Pr {Y ≤ y} =
1

2π

Z ∞

−∞

ey(jω+β)

jω + β
e−c 1

det(I + (jω + β)Λ)
dω (8)

where

c = m̄∗(I +
1

jω + β
Λ−1)−1m̄

• We could not find the distribution in closed form
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Dealing with Real Gaussian Variables

• When the Gaussian variables are real, the quadratic form can be

expressed as

Y = ‖Hr‖2Ar
= HT

r ArHr

where Ar is now symmetric.

• Remember the difference between complex and real Gaussian

variables is that the determinant of covariance matrix appears under

the square root

• Because of that, we have

Pr {Y ≤ y} =
1

2π

Z ∞

−∞

ey(jω+β)

jω + β

1p
det(I + Ar(jω + β))

(9)
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Further Results

• We can use this approach to find the distribution of a ratio of

Gaussian norms

Pr

(
ε1 + ‖H‖2B1

ε2 + ‖H‖2B2

≤ x

)
= Pr {‖H‖B1−xB2 ≤ ε2x− ε1}

• We can use this approach to find the joint distribution of two or

more weighted norms

FXa,Xb(xa, xb) = Pr
�‖H‖2A ≤ xa, ‖H‖2B ≤ xb

	
• All results can be extended to isotropic distributions: we can find

the distribution of ‖φ‖2A in closed form
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An Application to Broadcast Channels

• Multiple antennas add tremendous value to point to point systems

• Research shifted recently to the role of multiple antennas in

multiuser systems

– (Uplink) Multiple Access (MAC)

– (Downlink) Broadcast (BC)

• Broadcast scenarios (point to multi-point) are especially important

because downlink scheduling is the major bottleneck for broadband

wireless networks
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Three Main Questions in a Broadcast Scenario (1)

Q1) Quantify the maximum sum rate possible to all users

A1) Sum-rate is achieved using dirty paper coding (DPC) (Caire and

Shamai ’02, Viswanath and Tse ’02, Vishwanath et al. ’02, Yu and Cioffi ’02)

(-) DPC is computationally complex at both Tx and Rx

(-) Requires a great deal of Feedback (CSI for all users at Tx)
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Three Main Questions in a Broadcast Scenario (2)

The second question is motivated by the drawbacks of DPC

Q2) Devise computationally efficient algorithms for capturing capacity

A2) Utilize multi-user diversity to achieve performance close to capacity

(+) Opportunist multiple random beamforming coincides

asymptotically with DPC (Sharif and Hassibi ’06)

R = M log log n + M log
P

M
+ o(1)

(+) Requires simply SINR feedback to Tx
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Three Main Questions in a Broadcast Scenario (3)

Q3) With this promising performance, how does opportunist

beam-forming perform under various non-idealities

A3) (i) Time correlation (Kountouris and Gesbert ’05)

(ii) Frequency correlation (Fakhereddin, Sharif, and Hassibi’06)

(iii) Channel estimation error (Vikali, Sharif, and Hassibi ’06)

(iv) Spatial correlation (D. Park and S Y. Park ’05)

Main Problem to be Addressed:

• For a Gaussian broadcast channel, we would like to quantify the hit

that transmit correlation causes to scaling laws of the sum-rate

capacity. We consider DPC and various beamforming schemes.
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System Model

• Base station with M antennas broadcasting to n single-antenna users

• Received signal at each antenna

Yi =
√

PHiS + Wi, i = 1, . . . , n

with E[S∗S] = 1 and Gaussian noise Wi ∼ CN(0, I)

• Channel Hi of i-th user is 1×M vector

– Distributed as CN(0, R); R is nonsingular with tr(R) = M

– Known perfectly at receiver

– Follows a bock fading model (with coherence interval T )

– Hi is independent from one user to another
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Scaling of DPC under Correlation

• Sum-rate capacity of DPC

RDPC = E

(
max

{P1,...,Pn,
P

Pi=P}
log det

 
I +

nX
i=1

H∗
i PiHi

!)
• For large n we can show that RHS is both an upper and lower bound

RDPC = M log log n + M log
�

P
M

�
+ M log M

√
det R

Since tr(R) = M , the geometric mean satisfies

M
p

det(R) ≤ tr(R)

M
≤ 1

• Compare with rate for spatially uncorrelated channel

RDPC = M log log n + M log
�

P
M

�
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What is Random Beam Forming?

• Choose M random orthonormal vectors φm, m = 1, . . . , M

(according to an isotropic distribution)

• Construct the signal

S(t) =

MX
m=1

φmsm(t), t = 1, . . . , T

where T is less than the coherence interval of the channel.

• After T channel uses we independently choose another isotropic set

of orthonormal vectors {φm}, and so on. So we are transmitting M

random beams.

• This is a generalization of the scheme “Opportunistic Beamforming”

(Viswanath et al. ’02) in which only one random beam is

transmitted and proportional fairness is guaranteed.
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Exploit Multi-User Diversity

• Each receiver i = 1, . . . , n computes the following M SINRs

SINRi,m =
|Hiφm|2

1/ρ +
P

n6=m |Hiφn|2 , m = 1, . . . , M

and feeds back the best SINR

• Rather than randomly assigning the beams, the transmitter assigns

signal sm to the user with the best SINR for that signal. Therefore

C = E

MX
m=1

log

�
1 + max

i=1,...,n
SINRi,m

�
• Due to the symmetry of all the random variables involved:

C = ME log

�
1 + max

i=1,...,n
SINRi,1

�
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Other Beamforming Schemes

• Random Beam forming (RBF) S(t) =
PM

m=1 φmsm(t)

• RBF with Channel whitening

S(t) =

MX
m=1

√
αR−1/2φmsm(t)

• RBF with general precoding

S(t) =

MX
m=1

√
αAφmsm(t)

• Deterministic beamforming

S(t) =

MX
m=1

φmsm(t), φm’s are fixed
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How to Determine Scaling of BF Schemes

1. Sum rate

RBF = E

MX
m=1

log

�
1 + max

i=1,...,n
SINRi,m

�
= ME

�
1 + max

i=1,...,n
SINRi,m

�
2. To calculate expectation, condition on beams

RBF|Φ = MEHi|Φ

�
1 + max

i=1,...,n
SINRi,m

�
• SINRi,m|Φ is iid over i

• Find the distribution of SINRi,m|Φ
• Employ extreme value theory to find maxi=1,...,n SINRi,m

3. Average RBF|Φ over Φ
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Statistics of SINRi,m (White Channel)

• SINRi,m is defined by

SINRi,m =
|Hiφm|2

1/ρ +
P

n6=m |Hiφn|2 , m = 1, . . . , M

• Easy to find distribution of SINRi,m|Φ when Hi is white

f(x) =
e− x

ρ

(1 + x)M

�
1

ρ
(1 + x) + M − 1

�
F (x) = 1−

e− x
ρ

(1 + x)M

• Finding these statistics in the correlated case is challenging
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Statistics of SINRi,m given Φ (Correlated Case)

• We can show that the CDF of SINR in the correlated case

F (x) = 1− 1
2πM det(R)

λM

QM−1
i=1

λiλM
x(λi−λM )

e
− 1

ρ
x

λM

where λ1 ≤ λ2 ≤ · · · ≤ λM are the eigenvalues of the matrix

A = (1 + x)Λ1/2φmφ∗mΛ1/2 − xΛ ρ =
P

M

Note that eigenvalues are a function of x.

• pdf is given by

f(x) =
1

2πM det(R)
e
− 1

ρ
x

λM
M−1Y
i=1

λiλM

x(λi − λM )
×8<: 1

ρ

‖qM‖2C
λM

− ‖qM‖2B −
MX

i=1

1

λi

λ2
M‖qi‖2C − λ2

i ‖qM‖2C
x(λi − λM )

9=;
where B = Λ1/2(φmφ∗m − I)Λ1/2 C = Λ1/2φmφ∗mΛ1/2
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Scaling of Maximum SINR

• Can now show

lim
x→∞

1− F (x)

f(x)
=

P

M

1

‖φm‖2Λ−1

• Using extreme value theory, we can show that for large n

max
i=1,...,n

SINRi,m =
P

M

1

‖φm‖2Λ−1

log n

• Conditional sum-rate capacity scales as

RBF|Φ = M log log n + M log
P

M
+ M log

�
1

‖φm‖2Λ−1

�
• Sum-rate capacity of random beam-forming

RRBF = M log log n + M log P
M

+ MEΦ log

�
1

‖φm‖2Λ−1

�
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Averaging over the Random Beams

• Need to obtain CDF of 1
‖φm‖2Λ−1

which is challenging.

• The CDF of y = 1
‖φ‖2

Λ−1
is given by

G(x) = Pr( 1
‖φ‖2

Λ−1
< x) = 1−Pi ηi

�
1
x
− 1

λi(Λ)

�M−1

u
�
1− x

λi(Λ)

�
where ηi = 1Q

j 6=i(
1

λj(Λ)− 1
λi(Λ) )

• Use CDF to show that

RRBF = M log log n + M log
P

M
+

log λ1(Λ) +

MX
i=1

ηi log

�
λi

λ1

�M−1X
k=1

1

k + 2
(
−1

λi
)M−1−k 1

yk+2

����λi

λ1

25
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Sum Rate of Deterministic Beam Forming

• Sum-rate of deterministic beam forming

RBF−D = M log log n + M log
P

M
+

MX
i=1

log

�
1

φ∗i U∗Λ−1Uφi

�
U∗Λ−1U is the eigenvalue decomposition of R−1

• Special case: Uφi’s are the columns of identity matrix

RBF−D = M log log n + M log P
M

+ M log M
√

det R

Since tr(R) = M , the geometric mean satisfies

M
p

det(R) ≤ tr(R)

M
≤ 1
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Sum rate of RBF with Channel Whitening

• For random beam forming with channel whitening,

S(t) =

MX
m=1

√
αR−1/2φmsm(t)

• Set α = tr(R−1)
M

to guarantee E[S∗S] ≤ 1

• Scaling becomes the same as for white channel case with reduced

signal power

RBF−W = M log log n + M log P
M

+ M log M
tr(R−1)
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Simulations

• Consider a base station with M = 2 and M = 3 antennas

• The corresponding correlation matrix is

R =

241 α

α 1

35

R =

2664 1 α α2

α 1 α

α2 α 1

3775
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Figure 1: Sum-rate loss versus the correlation factor α for a system
with M = 2 and n = 100.
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Figure 2: Sum-rate versus the correlation factor α for a system with
M = 2, P = 10, and n = 100.
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Figure 3: Sum-rate loss versus the correlation factor α for a system
with M = 3 and n = 100.
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Figure 4: Sum-rate versus the number of users in a system with
M = 2 and α = 0.5
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Can We Do Better?

• Apply a general precoding matrix

αAS(t) = αA

MX
m=1

φm(t)sm(t), t = 1, . . . , T

• The factor α ensures that we have a fixed power constraint

α ≤
s

M

tr(A∗A)

• This produces the effective channel

H̃i = αHiA

with correlation α2R̃ = α2A∗RA.
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What is the Sum-Rate with a General Precoding?

• Sum-rate is given by

RPC = M log log n + M log
P

M
− hPC (10)

where hPC is the hit incurred by using a general precoding matrix A

hPC = M log tr(A∗A)
M

+ ME log ‖φm‖2R̃−1 (11)

• Finding the optimum A that minimizes hit is difficult. But we can

show that optimum precoding matrix Aopt can be written as

Aopt = QAoptDAopt

where QAopt is an orthornormal matrix and Dopt is diag with

positive entries.
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Special choices of A

• Difficult to optimize Qopt and Dopt jointly.

• Set Qopt = QR as this will diagonalize R and optimize over Dopt.

• Zero forcing

AZF = QRΛ
− 1

2
R

and resulting hit

hZF = M log
tr(R−1)

M
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Special Choices of A

• MMSE precoding

A = QR(Λ + βI)−
1
2

with β obtained as a solution to a fixed-pt problem

Tr(Λ + β∗I)−2

Tr(Λ + β∗I)−1
= E

0@ 1

β∗ + 1
‖Φm‖2Λ−1

1A
• More generally, we can set Qopt = QR and find the optimum Dopt.

Need to solve a set of M implicit equations

1

di
E

"
1

diλi
|φ(i)|2

‖φ‖2
D−1Λ−1

#
=

1

tr(D)
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Minimize an Upper Bound Instead

• Difficulty in minimizing hPC due to the phi term

hPC = M log
tr(A∗A)

M
+ ME log ‖φm‖2R̃−1

• Minimize an upper bound

h ≤ M log tr(A∗A) + M log tr((A∗RA)−1)

• Can show that optimum A in this case is

A = QRΛ
−1/4
R
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Figure 5: Sum-rate loss versus correlation factor α for a system with
M = 3, P=10 and n = 200.
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Conclusion

• Presented a new approach for calculating the (joint) distribution of

indefinite quadratic forms in (Gaussian) random variables.

• Used these results to study the effect of spatial correlation on

various multiuser schemes for MIMO broadcast channels.

• Considered DPC and random, deterministic, and channel whitening

schemes.

• All these techniques exhibit the same scaling for iid channels

Rsum−rate = M log log n + M log P
M

• In the presence of correlation between transmit antennas, scaling is

Rsum−rate = M log log n + M log P
M

+ M log c
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