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A Brief about KFUPM

• Established in 1963

• Located in Dhahran, in the heart of oil fields and industrial cities

• Has a large world class campus but small enough to build close

relationships

• Disciplines: Engineering, Sciences, Environmental Design, &

Industrial Management

• Around 450 faculty members and 8,000 Students (10% Graduate

students)

• The QS Times Ranking (2008): 338 out of 500 Top World

Universities
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Quadratic Forms in Gaussian Variables

• Gaussian variables play a very important role in statistics, signal

processing, and communications

• Quadratic forms in Gaussian random variables are of particular

importance

• We will characterize the distribution of quadratic forms and apply

our findings to

– Multiuser information theory

– Mean-square analysis of the normalized LMS adaptive filter
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Simplest Case of Quadratic Forms

• Y =
PM

i=1 |H(i)|2 is a sum of iid Gaussian random variables

• Y is Chi-square with M degrees of freedom

• We find the pdf of Y using the characteristic function approach

fy(y) = f|H(1)|2(y) ∗ f|H(2)|2(y) ∗ · · · ∗ f|H(M)|2(y)

φy(w) = φM (w)

→ fY (y) → FY (y)

• This gives the pdf of the quadratic form Y = ‖H‖2
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More Complicated Forms

• Follow same approach to find pdf of a weighted sum

Y =

MX
i=1

λi|H(i)|2 λi ≥ 0

• This corresponds to the weighted Euclidean norm

‖H‖2Λ ∆
= H∗ΛH

• This is equivalent to finding the CDF of

‖H‖2A ∆
= H∗AH

where A is positive semi-definite.

• Approach fails when the sum is mixed (not all λi’s are postive)
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What about Indefinite Quadratic Forms

• We tackle the most general problem

Y = ‖H‖2A ∆
= H∗AH (1)

– A is a general Hermitian matrix

– H is circularly symmetric Gaussian random variable, i.e.

H ∼ CN (0,R).

• We abandon the conventional approach of

Charcateristic function → pdf → CDF
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CDF is a more Convenient Tool than the pdf

• The CDF is a direct expression of probability

• The pdf can be obtained from the CDF by differentiation

• Moments can be obtained from the CDF using integration by
parts

• The CDF expression can be obtained directly without going
through the characteristic function.

• The approach is unified: it applies to real/complex,
white/correlated, cental/non-central Gaussian r. v.’s

• Can even be extended to non-Gaussian r. v.’s
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Evaluating the CDF the Usual Way is Difficult

• Consider the random Hermitian quadratic form

Y = ‖H‖2A ∆
= H∗AH

• H has the pdf p(H) = 1
(2π)N e−‖H‖2

• The CDF of Y is defined by

FY (y) = P {Y ≤ y}
=

Z
· · ·
Z
A

p(H)dH

A is an area in M multidimensional plane defined by ‖H‖2A ≤ y

• Integral very difficult to evaluate/manipulate
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An Alternative Way...

• Express inequality that defines A in terms of unit step function

• CDF takes the form

FY (y) =

Z
· · ·
Z
A

p(H)dH

=

Z ∞

−∞
· · ·
Z ∞

−∞
p(H)u(y − ‖H‖2A)dH

=
1

2πM

Z ∞

−∞
· · ·
Z ∞

−∞
e−H∗Hu(y − ‖H‖2A)dH

The constraint appears in the integrand and not in the integration

limits
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• Difficult to deal with the unit step as is

• Replace unit step with its Fourier transform

u(x) =
1

2π

Z ∞

−∞

ex(jω+β)

jω + β
dω

which is valid for any β > 0

• So

u(y − ‖H‖2A) =
1

2π

Z ∞

−∞

e(y−‖H‖2A)(jω+β)

jω + β
dω
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The CDF as a 1-D Integral

• CDF can be written as M + 1 integral

FY (y) =
1

2πM+1

Z ∞

−∞
dω

ey(jω+β)

jω + β

Z
· · ·
Z

dHe−H∗(I+A(jω+β))HdH

• Inner integral looks like integral of a Gaussian pdf

1

πM

Z
· · ·
Z

e−H∗(I+A(jω+β))HdH =
1

det(I + A(jω + β))

• We are left with

FY (y) =
1

2π

Z ∞

−∞

ey(jω+β)

jω + β

MY
i=1

1

1 + λi(jω + β)
dω
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The CDF in Closed Form

• Use partial fraction expansion and contour integration to write CDF

in closed form

FY (y) = u(y) +

MX
l=1

λM+1
iQ

l6=i(λi − λl)

1

|λi|e
− y

λl u(
y

λl
)

• Note that this result applies irrespective of the correlation of H and

irrespective of the weight matrix A

λi’s are the eigenvalues of A
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The Nonzero Mean Problem

• In the nonzero mean problem, we have the quadratic form

Y = ‖H − a‖2A

• We can evaluate the CDF up to a 1-D integral

Pr {Y ≤ y} =
1

2π

Z ∞

−∞

ey(jω+β)

jω + β
e−c 1

det(I + (jω + β)Λ)
dω (2)

where

c = a∗(I +
1

jω + β
Λ−1)−1a

• We could not find the distribution in closed form
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Distribution of a Ratio of Weighted Norms

• We can use this approach to find the distribution of a ratio of

Gaussian norms

Pr

(
ε1 + ‖H‖2B1

ε2 + ‖H‖2B2

≤ x

)
= Pr {‖H‖B1−xB2 ≤ ε2x− ε1}

• Recall the CDF FY (y) = Pr{‖H‖2A ≤ y}

FY (y) = u(y) +

MX
l=1

λM+1
iQ

l6=i(λi − λl)

1

|λi|e
− y

λl u(
y

λl
)

• To get the CDF of the ratio, perform the substitution

A → B1 − xB2

y → ε2x− ε1
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Figure 1: Empirical and calculated CDF’s of a ratio of norms
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Further Results

• Can use this approach to find the distribution of an indefinite

quadratic form in real-Gaussian random vector

• We can use this approach to find the joint distribution of two or

more weighted norms

FXa,Xb(xa, xb) = Pr
�‖H‖2A ≤ xa, ‖H‖2B ≤ xb

	
• Results can be extended to non-Gaussian r. v.’s (e.g. quadratic

forms in isotropic random variables).
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For more details ...

1. T. Y. Al-Naffouri and B. Hassibi, “On the distribution of indefinite

Hermitian quadratic forms in Gaussian random variables,” Submitted

to International Symposium on Information Theory (ISIT)

2. T. Y. Al-Naffouri and B. Hassibi, “On the distribution of indefinite

Hermitian quadratic forms in Gaussian random variables,” under

preparation for submission to IEEE Transactions on Information

Theory
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Application I:

Effect of Correlation on the Sum-Rate of Broadcast

Channels
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An Application to Broadcast Channels

• Multiple antennas add tremendous value to point to point systems

• Research shifted recently to the role of multiple antennas in

multiuser systems

– (Uplink) Multiple Access (MAC)

– (Downlink) Broadcast (BC)

• Broadcast scenarios (point to multi-point) are especially important

because downlink scheduling is the major bottleneck for broadband

wireless networks
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Three Main Questions in a Broadcast Scenario (1)

Q1) Quantify the maximum sum rate possible to all users

A1) Sum-rate is achieved using dirty paper coding (DPC) (Caire and

Shamai ’02, Viswanath and Tse ’02, Vishwanath et al. ’02, Yu and Cioffi ’02)

(-) DPC is computationally complex at both Tx and Rx

(-) Requires a great deal of Feedback (CSI for all users at Tx)
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Three Main Questions in a Broadcast Scenario (2)

The second question is motivated by the drawbacks of DPC

Q2) Devise computationally efficient algorithms for capturing capacity

A2) Utilize multi-user diversity to achieve performance close to capacity

(+) Opportunist multiple random beamforming coincides

asymptotically with DPC (Sharif and Hassibi ’06)

R = M log log n + M log
P

M

(+) Requires simply SINR feedback to Tx
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Three Main Questions in a Broadcast Scenario (3)

Q3) With this promising performance, how does opportunist

beam-forming perform under various non-idealities

A3) (i) Time correlation (Kountouris and Gesbert ’05)

(ii) Frequency correlation (Fakhereddin, Sharif, and Hassibi’06)

(iii) Channel estimation error (Vikali, Sharif, and Hassibi ’06)

(iv) Spatial correlation (D. Park and S Y. Park ’05)

Main Problem to be Addressed:

• For a Gaussian broadcast channel, we would like to quantify the hit

that transmit correlation causes to scaling laws of the sum-rate

capacity. We consider DPC and various beamforming schemes.
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System Model

• Base station with M antennas broadcasting to n single-antenna users

• Received signal at each antenna

Yi =
√

PHiS + Wi, i = 1, . . . , n

with E[S∗S] = 1 and Gaussian noise Wi ∼ CN(0, I)

• Channel Hi of i-th user is 1×M vector

– Distributed as CN(0,R); R is nonsingular with tr(R) = M

– Known perfectly at receiver

– Follows a bock fading model (with coherence interval T )

– Hi is independent from one user to another
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Scaling of DPC under Correlation

• Rate for spatially uncorrelated channel

RDPC = M log log n + M log
�

P
M

�
• Rate in the presence of correction

RDPC = M log log n + M log
�

P
M

�
+ M log M

√
detR

• Since tr(R) = M , the geometric mean satisfies

M
p

det(R) ≤ tr(R)

M
≤ 1
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What is Random Beam Forming?

• Choose M random orthonormal vectors φm, m = 1, . . . , M

(according to an isotropic distribution)

• Construct the signal

S(t) =

MX
m=1

φmsm, t = 1, . . . , T

where T is less than the coherence interval of the channel.

• After T channel uses we independently choose another isotropic set

of orthonormal vectors {φm}, and so on. So we are transmitting M

random beams.
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Exploit Multi-User Diversity

• Signal received by the ith user

Yi =
√

PHiφ1s1 +
√

PHiφ2s2 + · · ·+
√

PHiφMsM + Wi

• Each receiver i = 1, . . . , n computes the following M SINRs

SINRi,m =
|Hiφm|2

1/ρ +
P

k 6=m |Hiφk|2 , m = 1, . . . , M

and feeds back the best SINR

• Transmitter assigns signal sm to the user with the best SINR

C = E

MX
m=1

log

�
1 + max

i=1,...,n
SINRi,m

�
= ME log

�
1 + max

i=1,...,n
SINRi,1

�
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How to Characterize the Scaling

• Need to find the scaling of maxi=1,...,n SINRi,1 for large n

• An order statistics problem; need to find pdf and CDF of SINR

• SINR is a ratio of two weighted norms

SINRi,1 =
‖Hi‖2φ1φ∗1

1
ρ

+ ‖Hi‖2I−φ1φ∗1
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Statistics of SINRi,m (White Channel)

• Easy to find distribution of SINRi,m|Φ when Hi is white

f(x) =
e− x

ρ

(1 + x)M

�
1

ρ
(1 + x) + M − 1

�
F (x) = 1−

e− x
ρ

(1 + x)M

• Finding these statistics in the correlated case is challenging
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Statistics of SINRi,m Given Φ (Correlated Case)

• We can show that the CDF of SINR in the correlated case

F (x) = 1− 1
2πM det(R)

λM

QM−1
i=1

λiλM
x(λi−λM )

e
− 1

ρ
x

λM

where λ1 ≤ λ2 ≤ · · · ≤ λM are the eigenvalues of the matrix

A = (1 + x)Λ1/2φmφ∗mΛ1/2 − xΛ ρ =
P

M

Note that eigenvalues are a function of x.

• pdf is given by

f(x) =
1

2πM det(R)
e
− 1

ρ
x

λM
M−1Y
i=1

λiλM

x(λi − λM )
×8<: 1

ρ

‖qM‖2C
λM

− ‖qM‖2B −
MX

i=1

1

λi

λ2
M‖qi‖2C − λ2

i ‖qM‖2C
x(λi − λM )

9=;
where B = Λ1/2(φmφ∗m − I)Λ1/2 C = Λ1/2φmφ∗mΛ1/2

29



'

&

$

%

Scaling of Maximum SINR

• Can now show

lim
x→∞

1− F (x)

f(x)
=

P

M

1

‖φm‖2Λ−1

• Using extreme value theory, we can show that for large n

max
i=1,...,n

SINRi,m =
P

M

1

‖φm‖2Λ−1

log n

• Conditional sum-rate capacity scales as

RBF|Φ = M log log n + M log
P

M
+ M log

�
1

‖φm‖2Λ−1

�
• Sum-rate capacity of random beam-forming

RRBF = M log log n + M log P
M

+ MEΦ log

�
1

‖φm‖2Λ−1

�
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Sum rate of RBF with Channel Whitening

• For random beam forming with channel whitening,

S(t) =

MX
m=1

√
αR−1/2φmsm(t)

• Set α = tr(R−1)
M

to guarantee E[S∗S] ≤ 1

• Scaling becomes the same as for white channel case with reduced

signal power

RBF−W = M log log n + M log P
M

+ M log M
tr(R−1)
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Summary: Scaling of Sum-Rate

• White channel

R = M log log n + M log
P

M

• DPC with corelation

RDPC = M log log n + M log
P

M
+ M log

M
√

detR

• Random Beamforming with correlation

RRBF = M log log n + M log
P

M
+ MEΦ log

�
1

‖φm‖2Λ−1

�
• Random beamforming with channel whitening

RBF−W = M log log n + M log
P

M
+ M log

M

tr(R−1)
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Simulations

• Consider a base station with M = 2 and M = 3 antennas

• The corresponding correlation matrix is

R =

241 α

α 1

35

R =

2664 1 α α2

α 1 α

α2 α 1

3775
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Figure 2: Sum-rate loss versus the correlation factor α for a system
with M = 2 and n = 100.
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Figure 3: Sum-rate loss versus the correlation factor α for a system
with M = 3 and n = 100.
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Figure 4: Sum-rate versus the number of users in a system with
M = 2 and α = 0.5
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For more Details ...

1. T. Y. Al-Naffouri “Opportunistic beamforming with MMSE

precoding for spatially correlated channels,” Accepted in IEEE

Communication Letters.

2. T. Y. Al-Naffouri, M. Sharif, and B. Hassibi “ How much does

transmit correlation affect the sum-rate of MIMO downlink

channels?” IEEE Transactions on Communications, no. 2, Feb.

2009.
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Application II:

Mean-Square Analysis of Normalized LMS
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The Normalized LMS Algorithm

• LMS algorithm has found wide-spread application in control, signal

processing, and communication

• It suffers from slow convergence in the presence of input correlation

• NLMS reduces the effect of correlation by normalizing the input by

its energy

wi = wi−1 + µ
u∗i

ε + ||ui||2 e(i), i ≥ 0

e(i) = d(i)− uiwi−1 = uiw
o − uiwi + v(i)

• Performance determined by the behavior of weight error vector

‖w̃i‖2 = ‖wi −w0‖2
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Figure 5: Learning curves of the LMS algorithm
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The Normalized LMS Algorithm

• Stability and transient and steady-state behavior are completely

determined by input moments

• The matrix F determines the transient and steady-state preformance

F = I− µA + µ2B

A
∆
= 2E

�
u∗u

ε + ‖u‖2
�

B = E

�
(u¯ u)∗ (u¯ u)

(ε + ‖u‖2)2
�

• A and B are determined by finding 1st and 2nd moments of the

r.v.’s

rk =
|u(k)|2

ε + ||u||2 and skl =
|u(k)|2 + |u(l)|2

ε + ||u||2

• Moments can found in closed form by finding the CDF of these

variables.
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Figure 6: Steady-state EMSE of the ε-NLMS w.r.t. ε.
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For more Details ...

T. Y. Al-Naffouri and M. Moinuddin “Exact mean-square analysis of the

(ε-) normalized LMS,” under preparation for submission to IEEE

Transactions on Signal Processing.
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Conclusion

• Presented a new approach for calculating the (joint) distribution of

indefinite quadratic forms in (Gaussian) random variables.

• Used these results to study the effect of spatial correlation on

various multiuser schemes for MIMO broadcast channels.

Rsum−rate = M log log n + M log P
M

+ M log c

• The constant c depends 1) the scheduling technique used and 2) the

eigenvalues of the correlation matrix R

• Used the weighted norms ratio result to evaluate the performance of

NLMS in closed form.
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Other Research Interests

• Compressive sensing for impulsive noise estimation/cancellation in

OFDM (Giuseppe Caire, USC)

• Application of compressive sensing in multiuser information theory

(KFUPM students)

• Group Broadcast Channels (Amir Dana and Babak Hassibi, Cal

Tech)

• Adaptive filtering analysis and design (Vitor Nascimento; previously

with Ali Sayed, UCLA)

• Receiver design for (MIMO) OFDM in (block) time-variant channels

(Naofal Al-Dhahir U. T. Dallas) (previously with A. Paulraj,

Stanford)

• Blind channel estimation (KFUPM Students)
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Can We Do Better?

• Apply a general precoding matrix

αAS(t) = αA

MX
m=1

φm(t)sm(t), t = 1, . . . , T

• The factor α ensures that we have a fixed power constraint

α ≤
s

M

tr(A∗A)

• This produces the effective channel

H̃i = αHiA

with correlation α2R̃ = α2A∗RA.
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What is the Sum-Rate with a General Precoding?

• Sum-rate is given by

RPC = M log log n + M log
P

M
− hPC (3)

where hPC is the hit incurred by using a general precoding matrix A

hPC = M log tr(A∗A)
M

+ ME log ‖φm‖2R̃−1 (4)

• Finding the optimum A that minimizes hit is difficult. But we can

show that optimum precoding matrix Aopt can be written as

Aopt = QAoptDAopt

where QAopt is an orthornormal matrix and Dopt is diag with

positive entries.

47



'

&

$

%

Special choices of A

• Difficult to optimize Qopt and Dopt jointly.

• Set Qopt = QR as this will diagonalize R and optimize over Dopt.

• Zero forcing

AZF = QRΛ
− 1

2
R

and resulting hit

hZF = M log
tr(R−1)

M
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Special Choices of A

• MMSE precoding

A = QR(Λ + βI)−
1
2

with β obtained as a solution to a fixed-pt problem

Tr(Λ + β∗I)−2

Tr(Λ + β∗I)−1
= E

0@ 1

β∗ + 1
‖Φm‖2Λ−1

1A
• More generally, we can set Qopt = QR and find the optimum Dopt.

Need to solve a set of M implicit equations

1

di
E

"
1

diλi
|φ(i)|2

‖φ‖2
D−1Λ−1

#
=

1

tr(D)
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Minimize an Upper Bound Instead

• Difficulty in minimizing hPC due to the phi term

hPC = M log
tr(A∗A)

M
+ ME log ‖φm‖2R̃−1

• Minimize an upper bound

h ≤ M log tr(A∗A) + M log tr((A∗RA)−1)

• Can show that optimum A in this case is

A = QRΛ
−1/4
R
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Figure 7: Sum-rate loss versus correlation factor α for a system with
M = 3, P=10 and n = 200.
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