
'

&

$

%

Scaling Laws of Multiple Antenna
(Group) Broadcast Channels

Dr. Tareq Al-Naffouri

Electrical Engineering Department
King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

Fulbright Research Visitor
Electrical Engineering Department

USC

Joint work with Masoud Sharif, Amir Dana, and Babak Hassibi

1



'

&

$

%

Introduction to broadcast channels

• Multiple antennas add tremendous value to point to point systems

• Research shifted recently to the role of multiple antennas in

multiuser systems

– (Uplink) Multiple Access (MAC)

– (Downlink) Broadcast (BC)

• Broadcast scenarios (point to multi-point) are especially important

because downlink scheduling is the major bottleneck for broadband

wireless networks
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Outline

• Effect of Transmit Correlation on Sum-Rate of MIMO

Downlink Channels

• Scaling Laws of Multiple-Antenna Group Broadcast

Channels
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Part I

How Much Does Transmit Correlation Affect the
Sum-Rate of MIMO Downlink Channels?
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Three Main Questions in a Broadcast Scenario (1)

Q1) Quantify the maximum sum rate possible to all users

A1) Sum-rate is achieved using dirty paper coding (DPC) (Caire and

Shamai ’02, Viswanath and Tse ’02, Vishwanath et al. ’02, Yu and Cioffi ’02)

(-) DPC is computationally complex at both Tx and Rx

(-) Requires a great deal of Feedback (CSI for all users at Tx)
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Three Main Questions in a Broadcast Scenario (2)

The second question is motivated by the drawbacks of DPC

Q2) Devise computationally efficient algorithms for capturing capacity

A2) Utilize multi-user diversity to achieve performance close to capacity

(+) Opportunist multiple random beamforming coincides

asymptotically with DPC (Sharif and Hassibi ’06)

R = M log log n + M log
P

M
+ o(1)

(+) Requires simply SINR feedback to Tx
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Three Main Questions in a Broadcast Scenario (3)

Q3) With this promising performance, how does opportunist

beam-forming perform under various non-idealities

A3) (i) Time correlation (Kountouris and Gesbert ’05)

(ii) Frequency correlation (Fakhereddin, Sharif, and Hassibi’06)

(iii) Channel estimation error (Vikali, Sharif, and Hassibi ’06)

(iv) Spatial correlation (D. Park and S Y. Park ’05)

Main problem to be addressed:

• For a Gaussian broadcast channel, we would like to quantify the hit

that transmit correlation causes to scaling laws of the sum-rate

capacity. We consider DPC and various beamforming schemes.
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System Model

• Base station with M antennas broadcasting to n single-antenna users

• Received signal at each antenna

Yi =
√

PHiS + Wi, i = 1, . . . , n

with E[S∗S] = 1 and Gaussian noise Wi ∼ CN(0, I)

• Channel Hi of i-th user is 1×M vector

– Distributed as CN(0, R); R is nonsingular with tr(R) = M

– Known perfectly at receiver

– Follows a bock fading model (with coherence interval T )

– Hi is independent from one user to another
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Scaling of DPC under Correlation

• Sum-rate capacity of DPC

RDPC = E

(
max

{P1,...,Pn,
P

Pi=P}
log det

 
I +

nX
i=1

H∗
i PiHi

!)
• For large n we can show that RHS is both an upper and lower bound

RDPC = M log log n + M log
�

P
M

�
+ M log M

√
det R

Since tr(R) = M , the geometric mean satisfies

M
p

det(R) ≤ tr(R)

M
≤ 1

• Compare with rate for spatially uncorrelated channel

RDPC = M log log n + M log
�

P
M

�
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What is Random Beam Forming?

• Choose M random orthonormal vectors φm, m = 1, . . . , M

(according to an isotropic distribution)

• Construct the signal

S(t) =

MX
m=1

φmsm(t), t = 1, . . . , T

where T is less than the coherence interval of the channel.

• After T channel uses we independently choose another isotropic set

of orthonormal vectors {φm}, and so on. So we are transmitting M

random beams.

• This is a generalization of the scheme “Opportunistic Beamforming”

(Viswanath et al. ’02) in which only one random beam is

transmitted and proportional fairness is guaranteed.
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Exploit Multi-User Diversity

• Each receiver i = 1, . . . , n computes the following M SINRs

SINRi,m =
|Hiφm|2

1/ρ +
P

n6=m |Hiφn|2 , m = 1, . . . , M

and feeds back the best SINR

• Rather than randomly assigning the beams, the transmitter assigns

signal sm to the user with the best SINR for that signal. Therefore

C = E

MX
m=1

log

�
1 + max

i=1,...,n
SINRi,m

�
• Due to the symmetry of all the random variables involved:

C = ME log

�
1 + max

i=1,...,n
SINRi,1

�
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Other Beamforming Schemes

• Random Beam forming (RBF) S(t) =
PM

m=1 φmsm(t)

• RBF with Channel whitening

S(t) =

MX
m=1

√
αR−1/2φmsm(t)

• RBF with general precoding

S(t) =

MX
m=1

√
αAφmsm(t)

• Deterministic beamforming

S(t) =

MX
m=1

φmsm(t), φm’s are fixed

12



'

&

$

%

How to Determine Scaling of BF Schemes

1. Sum rate

RBF = E

MX
m=1

log

�
1 + max

i=1,...,n
SINRi,m

�
= ME

�
1 + max

i=1,...,n
SINRi,m

�
2. To calculate expectation, condition on beams

RBF|Φ = MEHi|Φ

�
1 + max

i=1,...,n
SINRi,m

�
• SINRi,m|Φ is iid over i

• Find the distribution of SINRi,m|Φ
• Employ extreme value theory to find maxi=1,...,n SINRi,m

3. Average RBF|Φ over Φ
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Statistics of SINRi,m (White Channel)

• SINRi,m is defined by

SINRi,m =
|Hiφm|2

1/ρ +
P

n6=m |Hiφn|2 , m = 1, . . . , M

• Easy to find distribution of SINRi,m|Φ when Hi is white

f(x) =
e− x

ρ

(1 + x)M

�
1

ρ
(1 + x) + M − 1

�
F (x) = 1−

e− x
ρ

(1 + x)M

• Finding these statistics in the correlated case is challenging
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Statistics of SINRi,m given Φ (Correlated Case)

• We can show that the CDF of SINR in the correlated case

F (x) = 1− 1
2πM det(R)

λM

QM−1
i=1

λiλM
x(λi−λM )

e
− 1

ρ
x

λM

where λ1 ≤ λ2 ≤ · · · ≤ λM are the eigenvalues of the matrix

A = (1 + x)Λ1/2φmφ∗mΛ1/2 − xΛ ρ =
P

M

Note that eigenvalues are a function of x.

• pdf is given by

f(x) =
1

2πM det(R)
e
− 1

ρ
x

λM
M−1Y
i=1

λiλM

x(λi − λM )
×8<: 1

ρ

‖qM‖2C
λM

− ‖qM‖2B −
MX

i=1

1

λi

λ2
M‖qi‖2C − λ2

i ‖qM‖2C
x(λi − λM )

9=;
where B = Λ1/2(φmφ∗m − I)Λ1/2 C = Λ1/2φmφ∗mΛ1/2
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Scaling of maximum SINR

• Can now show

lim
x→∞

1− F (x)

f(x)
=

P

M

1

‖φm‖2Λ−1

• Using extreme value theory, we can show that for large n

max
i=1,...,n

SINRi,m =
P

M

1

‖φm‖2Λ−1

log n

• Conditional sum-rate capacity scales as

RBF|Φ = M log log n + M log
P

M
+ M log

�
1

‖φm‖2Λ−1

�
• Sum-rate capacity of random beam-forming

RRBF = M log log n + M log P
M

+ MEΦ log

�
1

‖φm‖2Λ−1

�
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Averaging over the random beams

• Need to obtain CDF of 1
‖φm‖2Λ−1

which is challenging.

• The CDF of y = 1
‖φ‖2

Λ−1
is given by

G(x) = Pr( 1
‖φ‖2

Λ−1
< x) = 1−Pi ηi

�
1
x
− 1

λi(Λ)

�M−1

u
�
1− x

λi(Λ)

�
where ηi = 1Q

j 6=i(
1

λj(Λ)− 1
λi(Λ) )

• Use CDF to show that

RRBF = M log log n + M log
P

M
+

log λ1(Λ) +

MX
i=1

ηi log

�
λi

λ1

�M−1X
k=1

1

k + 2
(
−1

λi
)M−1−k 1

yk+2

����λi

λ1

17



'

&

$

%

Sum rate of Deterministic Beam Forming

• Sum-rate of deterministic beam forming

RBF−D = M log log n + M log
P

M
+

MX
i=1

log

�
1

φ∗i U∗Λ−1Uφi

�
U∗Λ−1U is the eigenvalue decomposition of R−1

• Special case: Uφi’s are the columns of identity matrix

RBF−D = M log log n + M log P
M

+ M log M
√

det R

Since tr(R) = M , the geometric mean satisfies

M
p

det(R) ≤ tr(R)

M
≤ 1
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Sum rate of RBF with Channel Whitening

• For random beam forming with channel whitening,

S(t) =

MX
m=1

√
αR−1/2φmsm(t)

• Set α = tr(R−1)
M

to guarantee E[S∗S] ≤ 1

• Scaling becomes the same as for white channel case with reduced

signal power

RBF−W = M log log n + M log P
M

+ M log M
tr(R−1)
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Simulations

• Consider a base station with M = 2 and M = 3 antennas

• The corresponding correlation matrix is

R =

241 α

α 1

35

R =

2664 1 α α2

α 1 α

α2 α 1

3775
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Figure 1: Sum-rate loss versus the correlation factor α for a system
with M = 2 and n = 100.
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Figure 2: Sum-rate versus the correlation factor α for a system with
M = 2, P = 10, and n = 100.
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Figure 3: Sum-rate loss versus the correlation factor α for a system
with M = 3 and n = 100.
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Figure 4: Sum-rate versus the number of users in a system with
M = 2 and α = 0.5
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Conclusion for Part I

• Studied the effect of spatial correlation on various multiuser schemes

for MIMO broadcast channels.

• Considered DPC and random, deterministic, and channel whitening

schemes.

• All these techniques exhibit the same scaling for iid channels

Rsum−rate = M log log n + M log P
M

• In the presence of correlation between transmit antennas, scaling is

Rsum−rate = M log log n + M log P
M

+ M log c

The constant 0 < c ≤ 1 depends on the scheduling scheme and the

eigenvalues of the correlation matrix R.
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Extra Slide: Finding the Distribution of SINR

• Consider the SINR for the first beam

SINRi,1 =
|Hiφ1|2

1/ρ +
PM

n=2 |Hiφn|2
,

• Define S by

S = −x

ρ
+ H∗

i ((1 + x)φ1φ
∗
1 − xI)Hi

Then

P (SINRi,1 > x) = P (S > 0) =

Z ∞

−∞
P (Hi)u(S)dHi

=
1

πM det(R)

Z ∞

−∞
e−H∗i R−1Hiu(S)dHi

• To evaluate integral, use the integral representation of unit step

u(S) =
1

2π

Z ∞

−∞

e(jω+β)S

jω + β
dω
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• Desired probability becomes

P ( SINRi,1 > x)

=
1

2πM+1 det(R)

Z ∞

−∞
dω

1

jω + β

Z ∞

−∞
dHie

(jω+β)S−H∗i R−1Hi

=
1

2πM+1 det(R)

Z ∞

−∞
dω

e
−(jω+β) x

ρ

jω + β

Z ∞

−∞
dHie

−H∗i R̃−1Hi

=
1

2πM+1 det(R)

Z ∞

−∞
dω

e
−(jω+β) x

ρ

jω + β

1

det(R̃)
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Part II:

Scaling Laws of Multiple-Antenna Group
Broadcast Channels
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Group broadcast scenario

• Broadcast problem: users interested in independent information

• Group Broadcast: Groups of users, each group of users interested in

the same information

– e.g. DAB/DVB with limited shows; users classified according to

shows they are interested in

– Single group: multicast problem (Khitsi et. al. 06, Jindal and Luo 06)

– Multiple-groups each consisting of one user: broadcast problem

30
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Three main questions in a broadcast scenario

Q1) Quantify the maximum sum rate possible to all users

Q2) Quantify the asymptotic behavior in regimes of interest

Q3) How do scheduling schemes performs under various
non-idealities

Would like to answer Q2): Asymptotic behavior in various regimes
(large number of users and antennas)
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System model

• Base station equipped with M antennas

• n users each equipped with a single receive antenna.

• n single-antenna users with received signal

yi = h∗i s + νi

– Input satisfies E[s∗s] ≤ P

– Noise is white Gaussian ν ∼ CN(0, IM )

– User channels are independent and distributed as CN(0, IM )

• Users are partitioned into K groups of n
K

users each; each group is

interested in the same data.
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Group broadcast capacity: Formal expression

• When there is one user only

Cone user = E max
B≥0 Tr(B)≤P

log det
�
1 + ‖h‖2B

�
• Single group broadcast

Csingle group = E maxB≥0 Tr(B)≤P mini log det
�
1 + ‖hi‖2B

�
• Group broadcast eventually limited by the worst user
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Group broadcast capacity: Formal expression (2)

• Multiple groups broadcast: K power matrices B1, . . . , BK , one for

each group.

• Matrices should maximize sum-rate under total power constraint

Cmultiplegroups = E max
Bk≥0

PK
k=1 Tr(Bk)≤P

log det

 
1 +

KX
k=1

‖hk‖2Bk

!
• With K user groups, we need to take care of the “worst” user of

each group

34



'

&

$

%

Our Approach

• CGB is difficult to calculate, so find the asymptotics

• Study behavior of CGB for large number of users n and antennas M

– Large n and fixed M

– Large M and fixed n

– Large M and n with M = βn

– Large M and n with M = log n
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Capacity bounding techniques (1)

Upper bounds

1. K times rate of one group

CGB ≤ KCsingle group

= K log(1 + max
B≥0 Tr(B)≤P

min
i
‖hi‖2B)

2. MAC-BC duality

• Maximum sum rate for K users, chosen one from each group

CK users = max

bk ≥ 0PK
k=1 bk = P

log det

 
I +

KX
k=1

hikbkh∗ik

!
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• Rate has to appeal to every user in every group

CK users ≤ min
hi1

· · ·min
hiK

max

bk ≥ 0PK
k=1 bk = P

log det

 
I +

KX
k=1

hikbkh∗ik

!

• Get rid of the determinant using AM-GM inequality

det(A) ≤
�

tr(A)
M

�M

to write

CGB ≤ M log

�
1 +

P

M
max

k
min
hi1

· · ·min
hiK

{‖hi1‖2, · · · , ‖hiK‖2}
�
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Capacity bounding techniques (2)

Lower Bounds

1. Time sharing

CGB ≥ 1

K

KX
k=1

log det

�
1 + max

Bk≥0 Tr(Bk)=P
min
hik

‖hik‖Bk

�
2. Treating interference as noise

CGB ≥ K log

 
1
K

P
M

mini ‖hi‖2
1 + K−1

K
P
M

mini ‖hi‖2

!

Need to study scaling of the weighted max−min norm

max
B≥0 Tr(B)=P

min
i
‖hi‖2B
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Our Approach

• CGB is difficult to calculate, so find the asymptotics

• Obtain upper and lower bounds on CGB ; bounds depend on the

max-min weighted norm

max
B≥0 Tr(B)=P

min
i
‖hi‖2B

• Find upper and lower bounds on the max-min in terms of the hi’s
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Bounds on the max-min weighted Euclidean norm

Here we obtain upper and lower bounds on the weighted Euclidean norm

for fixed M and n

Lower Bounds

1. max-min norm is greater than min norm

max
Tr(B)=P

min
i
‖hi‖2B ≥ P

M
min

i
‖hi‖2

2. hi belongs to a finite set {h1, · · · , h n
K
}

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≥ P

n
K

min
i
‖hi‖2

So

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≥ P

min{M, n
K
} min

i
‖hi‖2
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3. Diagonal values and eigenvalues: Define H = [h1 · · ·h n
K

], then

λmin(H∗H) ≤ min
i
‖hi‖2 ≤ λmax(H∗H)

Upper Bounds

1. max-min is less than min-max

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≤ P min

i
‖hi‖2

2. Replace minimization with averaging (Jindal and Luo ’06)

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≤ max

B

1
n
K

n
KX

i=1

‖hi‖2B

≤ Pλmax(H∗H)

Study boils down to studying the scaling of

1) min norm mini ‖hi‖2 2) eigenvalues of H∗H
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Our Approach

• CGB is difficult to calculate, so find the asymptotics

• Obtain upper and lower bounds on CGB ; bounds depend on the

max-min weighted norm

max
B≥0 Tr(B)=P

min
i
‖hi‖2B

• Find upper and lower bounds on the max-min in terms of the hi’s

• Find the asymptotics of mini ‖hi‖2
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Scaling of the Euclidean norm

In the rest of the presentation, we study the scaling of the minimum

Euclidean norm mini ‖hi‖2 for

• Large n and fixed M

• Large M and fixed n

• Large M and n with M = βn

• Large M and n with M = log n
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Scaling of the minimum of iid variables

• Let x1, x2, · · · , xn be nonnegative iid r. v.’s with CDF F (x), and CF

φ(x).

• Need to find scaling law of xmin(n) = {x1, x2, · · · , xn}

• CDF of the mimimum is given by

Fmin(x) = 1− (1− F (x))n

• Can show n
1
i0 xmin(n) converges in distribution to y with CDF

Fy(y) = 1− exp

�
−F (i0)(0)

i0!
yi0

�
• We thus say that

xmin converges to E

n
1
i0

44



'

&

$

%

where E is the expectation that arises from the distribution (1)

E =

Z ∞

0

exp

�
−F (i0)(0)

i0!
xi0

�
=

Ci0

F (i0)(0)
1
i0

Ci0 =
Γ( 1

i0
)(i0!)

1
i0

i0

• The constant i0 is the least i0 for which F (i0)(0) 6= 0

• Can find i0 and F (i0)(0) using initial value theorem

limx→0 F (i0)(x) = lims→∞ si0φ(s)

• Note that there is no restriction on distribution F (x)
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Scaling for large n, fixed M

• Scaling law for minhi ‖hi‖2, hi ∼ CN(0, R).

• CDF of ‖hi‖2 will have different forms depending on eigenvalues of R

• Characteristic function given by

φ(s) =

MY
l=1

1

1 + λls

• It is easy to see that

F (i0)(0) = lim
s→∞

siφ(s) =

8<: 0 for i < M

1
det(R)

for i = M

• We thus conclude that

mini ‖hi‖2 scales as CM det(R)
1

M 1

n
1

M
CM =

Γ( 1
M

)(M !)
1

M

M
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Scaling for large M , fixed n

• By the law of large numbers

min
i
‖hi‖2 = M

which implies

maxmin ‖hi‖2B ≤ PM

• Applying the law of large numbers to

max
B≥0 Tr(B)≤P

min
i
‖hi‖2B ≥ P

min{M, n
K
} min

i
‖hi‖

implies

maxmin ‖hi‖2B ≥ P K
n

M
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Scaling for large M and n, M = βn

We consider the regime: M, n →∞ with M = βn

• Use λmin(H∗
i Hi) ≤ mini ‖hi‖2 to show

min
i

‖hi‖2
M

≥ (1−
p

Kβ)2

which implies

maxmin
‖hi‖2B

M
≥ P (1−√Kβ)2

• Use max mini ‖hi‖2B ≤ P K
n

λmax(H∗H) to show

maxmin
‖hi‖2B

M
≤ P (1 + 1√

Kβ
)2
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Behavior of the min Euclidean Norm

The behavior of mini ‖hi‖2 looks like

Regime Asymptotic Value Method

large n
Γ( 1

M
)(M !)

1
M

M
1

n
1

M
min of iid r.v. Theorem

large M M Law of large numbers

M = β n
K

≥ (1−√Kβ)2

≤ (1 +
√

Kβ)2
Random Matrix theory

M = log n H ∈ [1− εl, 1] ε ' .8414 Chernof Bound
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Behavior of the max min Euclidean Norm

The behavior of maxB mini ‖hi‖2 looks like

Regime Lower Bound Upper Bound

large n CM
M

1

n
1

M
CM

1

n
1

M

large M P K
n

M PM

M = β n
K

P (1−√Kβ)2 P (1 + 1√
Kβ

)2

M = log n PH ,H ∈ [1− εl, 1] ε ' .8414 constant

CM =
Γ( 1

M
)(M !)

1
M

M
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GB scaling for large n, fixed M

• Group broadcast capacity scales as

CGB = αPCM
K

1
M

n
1

M

where
1

M
≤ α ≤ 1

• For spatially correlated case, the capacity incurs a det(R)
1

M hit

CGB = α det(R)
1

M PCM
K

1
M

n
1

M

• Unfortunate result: sum-rate decreases with the number of users.

• Counter this: increase the resources (i.e., number of antennas M).
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GB scaling for large M , fixed n

• Upper bound: K times rate of single group

CGB ≤ K max
B≥0 Tr(B)≤P

log(1 + min
i
‖hi‖2B)

CGB ≤ K log(1 + PM) (law of large numbers)

• Lower bound: Use time sharing

CGB ≥ log(1 + max
B≥0 Tr(B)≤P

min
i
‖hi‖B)

CGB ≥ log(1 + P K
n

M)
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GB scaling with M and n, M = βn

• Number of users and antennas grow to infinity while their ratio

remains constant M
n

= β
K

.

• Lower bound: Use time sharing

C ≥ log
�
1 + P (1−√Kβ)2

�
• To obtain an upper bound, we start with the bound

CGB ≤ K log(1 + max
B≥0 Tr(B)≤P

min
i
‖hi‖2B)

to show

CGB ≤ K log(1 + P (1 + 1√
β
)2)

• If we allow the number of antennas to grow linearly with the number

of users, we can guarantee a constant sum rate.
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Can we have constant rate with sublinear growth?

• But is it still possible to do so without straining the resources as

much?

• We showed that for large n

C = αPCM
K

1
M

n
1

M

CM

M
' 1

= αP
K

1
M

n
1

M

• To guarantee a constant rate, intuition requires to set M = log n
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GB scaling with M and n, M = log n

• Use the Chernof bound, we show that

lim
M=log n,n→∞

min
i

‖hi‖2
M

= H ∈ [1− εl, 1] w.p.1

where εl ' .8414.

• Capacity is lower-bounded by a constant

C ≥ log(1 + PH) (1)

• Capacity is also upper bounded by a constant because it is for

M = βn
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Can we do any better?

• Can we guarantee a constant capacity per stream without
straining resources as much?

• Can show that number of transmit antennas, M , should grow
faster than (log n)

1
2−ε(n),

ε(n) =
log log log n

log log n

to guarantee constant rate per stream
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Conclusion for Part II

• Studied the scaling law of the group broadcast problem

• Capacity decreases as n−
1

M with number of users

• To guarantee a constant rate if we allow M to grow as log n

• As a by-product (or a prerequisite), we studied the scaling of

– Minimum Euclidean norm mini ‖hi‖2

– Max min Euclidean norm maxB mini ‖hi‖2B

in various regimes

• Most results apply for general distributions on hi
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