1 OFDM signal and channel model

Consider an OFDM system with N sub-carriers, and a cyclic prefix length N_g . The duration of an OFDM symbol is $T = N_t T_s$, where T_s is the sampling time and $N_t = N + N_g$. Let $\mathbf{x}_{(n)} = [x_{(n)}[-\frac{N}{2}], x_{(n)}[-\frac{N}{2}+1], \dots, x_{(n)}[\frac{N}{2}-1]]^T$ be the *nth* transmitted OFDM symbol, where $\{x_{(n)}[b]\}$ are the BPSK or QAM symbols. After transmission over a multi-path Rayleigh channel, the *nth* received OFDM symbol $\mathbf{y}_{(n)} = [y_{(n)}[-\frac{N}{2}], y_{(n)}[-\frac{N}{2}+1], \dots, y_{(n)}[\frac{N}{2}-1]]^T$ is given by:

$$\mathbf{y}_{(n)} = \mathbf{H}_{(n)}\mathbf{x}_{(n)} + w_{(n)} \tag{1.1}$$

where $\mathbf{w}_{(n)} = \left[w_{(n)}\left[-\frac{N}{2}\right], w_{(n)}\left[-\frac{N}{2}+1\right], \dots, w_{(n)}\left[\frac{N}{2}-1\right]\right]^T$ is a white complex Gaussian noise vector with covariance matrix $\sigma_w^2 \mathbf{I}_N$ and $H_{(n)}$ is a $N \times N$ channel matrix with elements given by:

$$[H_{(n)}]_{k,m} = \frac{1}{N} \sum_{l=1}^{L} \left[e^{-j2\pi (\frac{m-1}{N} - \frac{1}{2})\tau_l} \sum_{q=0}^{N-1} \alpha_l^{(n)}(qT_s) e^{j2\pi \frac{m-k}{N}q} \right]$$
(1.2)

where L is the total number of propagation paths, α_l is the *lth* complex gain of variance $\sigma_{\alpha_l}^2$ and $\tau_l \times L$ is the *lth* delay (τ_l is not necessarily an integer, but $\tau_L < N_g$). The L individual elements of { $\alpha_l^{(n)}(qT_s) = \alpha_l(qT_s + nT)$ } are uncorrelated with respect to each other. They are widesense stationary (WSS), narrow-band complex Gaussian processes, with the so-called Jakes' power spectrum of maximum Doppler frequency f_d^1 (i.e., $E(\alpha_l(q_1T_s)\alpha_l^*(q_2T_s) = \sigma_{\alpha_l}^2 J_0(2\pi f_dT_s(q_1 - q_2))))$ [3, 4]. The average energy of the channel is normalized to one, i.e., $\sum_{l=1}^{L} \sigma_{\alpha_l}^2 = 1$.

We note that for slowly time varying channel, we have $(\alpha(0) = \alpha(T_s) = \alpha(2T_s) = \dots = \alpha((N-1)T_s))$ and consequently the $\mathbf{H}_{(n)}$ matrix becomes diagonals with elements are given by

$$[H_{(n)}]_{k,k} = \sum_{l=1}^{L} \left[\alpha_l^{(n)} e^{-j2\pi (\frac{k-1}{N} - \frac{1}{2})\tau_l} \right].$$
(1.3)

Using (1.3), the observation model in (1.1) for the the *nth* OFDM symbol can be re-written as

$$\mathbf{y}_{(n)} = \text{Diag}\{\mathbf{x}_{(n)}\}\mathbf{F}(\boldsymbol{\tau})\boldsymbol{\alpha}_{(n)} + w_{(n)}$$
(1.4)

where $\boldsymbol{\alpha}_{(n)} \stackrel{\text{def}}{=} \left[\alpha_1^{(n)}, \dots, \alpha_L^{(n)} \right]^T$, $\boldsymbol{\tau} \stackrel{\text{def}}{=} \left[\tau_1, \dots, \tau_L \right]^T$ and **F** is defined by

$$(\mathbf{F})_{k,l} = e^{-j2\pi(\frac{k-1}{N} - \frac{1}{2})\tau_l}$$

The objective is to jointly estimate the path delay parameter τ and the state $\{\alpha_{(n)}\}_n$ using the set of received signals $\{\mathbf{y}_{(n)}\}_n$.

 $^{{}^{1}}J_{0}(.)$ is the first kind 0th-order Bessel function

2 Objective

The main objective of this project is to extend the algorithm proposed in [2] by combining the expectation-maximization (EM) algorithm with Kalman smoother algorithm to yield time-varying complex gains estimation and ML estimate of the paths delay for OFDM signal. In [1] the EM algorithm has been adapted for joint channel and data recovery in fast fading environments. It should be interesting to extend this work for joint estimation parameters (i.e., time-varying complex gains and the paths delay parameters).

To evaluated the performance of this estimator it should be interesting to calculate the hybrid Cramér Rao-bound basing on the work presented in [5].

References

- T. Y. Al-Naffouri, "An EM-based forward-backward Kalman filter for the estimation of timevariant channels in OFDM," *IEEE Transactions on Signal Processing*, vol. 57, no. 7, pp. 3924-3930, July 2007.
- [2] H. Abeida, J-M Brossier, L. Ros, J. Vilà Valls, "An EM algorithm for path delay and complex gain estimation of slowly varying fading channel for CPM signals," *Proceedings - IEEE Globecom'09*, Dec. 2009.
- [3] W. C. Jakes, *Microwave Mobile Communications*, New York: Wiley, 1974.
- [4] H.Wang and P. Chang, "On verifying the first-order Markovian assumption for a Rayleigh fading channel model," *IEEE Trans. Veh. Technol.*, vol. 45, pp. 353-357, May 1996.
- [5] S. Bay, C. Herzet, J. M. Brossier, J. P. Barbot and B. Geller, "Analytic and asymptotic analysis of Bayesian Cramer-Rao bound for dynamical phase offset estimation" *IEEE Trans. Signal Processing*, vol. 56, pp. 61-70, Jan. 2008.