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One of the most severe problems that are encountered in DSL design is impulse noise. As its
name suggests, impulse noise is a phenomenon that happens rarely, but when it occurs it almost
completely destroys the DSL signal. Impulse noise occurs due to effects from electronic switching
equipment in the telephone network (or nearby disturbances such as the starting of an automobile
or vacuum cleaner). Impulse noise is an impulsive or a group of large individual impulses that
take place in the time domain and then spreads out in the frequency domain to destroy the DSL
signal.

It is difficult to design DSL systems to combat impulse noise because it happens rarely (and
thus it is not economical to design the system for a worst case scenario). Impulse noise cannot be
ignored also because when it takes place, it could devastate transmission and force the receiver to
drop a few DSL symbols.

1 Signal model and problem formulation

The transmission model in a DSL system can be written as

y = Hx+ e+ z (1.1)

where y and x are the time-domain OFDM receive and transmit signal blocks (after CP removal)
and z ∼ CN (0, N0I). The vector e is an impulse noise process as specified above. Specifically, e
is a random vector with support (set of the non zero components) I(e) uniformly distributed over
all

(
m
s

)
possible supports of cardinality s ≪ m, and i.i.d. non-zero components ∼ CN (0, I0).

Due to the presence of the cyclic prefix, H is a circulant matrix describing the cyclic convolution
of the channel impulse response with the block x. Let F denote a unitary DFT matrix with (k, ℓ)
element [F]k,ℓ =

1√
n
e−j2πkℓ/n with k, ℓ ∈ {0, . . . , n − 1}. The time domain signal is related to the

frequency domain signal by

x =
1√
n
FHx̌ (1.2)

Furthermore, given a circulant convolution matrix H we have that

H = FHDF (1.3)

where D = diag(ȟ) and ȟ =
√
nFh is the DFT of the channel impulse response (whose coefficients

are found, by construction, on the first column of H).
Demodulation amounts to computing the DFT

y̌ = Fy

= diag(H0, . . . , Hm−1)x̌+ FHz+ FHe

= Dx̌+ ž+ Fe (1.4)

where Hi =
∑L

k=0 hℓe
j 2π

N
ℓi are the DFT coefficients of the channel impulse response, and where

ž = Fz has the same distribution of z. Without impulsive noise, it is well-known that (1.4) reduces
to a set of m parallel Gaussian channels y̌i = Hix̌i + ži, for i = 1, . . . ,m.

In the presence of the impulsive noise, the performance of a standard OFDM demodulator
may dramatically degrade since even a single impulse in an OFDM block may cause significant
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degradation to the whole block. This is because ě = Fe can have a large variance per component,
and therefore it affects more or less evenly all symbols of the block.

In any DSL transmission, some carriers are left unutilized. These unutilized carriers come
from guard-bands, or from carriers left because the user does not use all available bandwidth. For
example, with longer DSL lines, we know that the available transmission bandwidth gets smaller
and that leaves many carriers free. When impulsive noise attacks a DSL signal, it does so in the
time domain. It is difficult to deal with impulsive noise in the time domain by clipping because
the OFDM signal is itself impulsive in nature. However, in the frequency domain, the impulsive
noise will appear alone in the free carriers. By partial observation of the impulsive noise in the free
carriers, we can detect the presence of impulsive noise, estimate it and cancel it before proceeding
to decoding. This method was used in [1] to deal with impulse noise using compressive sensing
[2], [3].

There are different types of impulse noise but we will focus on REIN (Repetitive Electrical
Impulse Noise) in this project. As its name suggests, this type of noise is repetitive in nature
with frequency that is twice as much and the AC frequency (i.e. 120 Hz) with short duration 200
µsec to 1.2 msec (amounting to 1-8 DMT symbols). As it occurs in bundle (i.e. many impulses
occur together), normal compressive sensing techniques cannot be utilized here. Instead, block
compressive sensing techniques [4] - [9] might be used to estimate it and cancel its effect.

2 Objective

The main objective of this project is to estimate and cancel the effect of REIN in DSL systems
using block compressive sensing.
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