HOMEWORK \#3

Due Date: Mar. 17, 2010

Q1 (Matrix manipulations of a scalar quantity) Consider the expression

$$
z(\mathbf{x})=\sigma+\mathbf{b}^{*} \mathbf{x}+\mathbf{x}^{*} \mathbf{c}+\mathbf{x}^{*} \mathbf{A} \mathbf{x}
$$

where $\sigma, \mathbf{b}, \mathbf{c}, \mathbf{A}$, and \mathbf{x} are in general complex valued

1. Write $z(\mathbf{x})$ in the form $\mathbf{a}^{*} \mathbf{Q a}$ for some \mathbf{a} and \mathbf{Q} that you should specify.
2. What are the conditions on $\sigma, \mathbf{b}, \mathbf{c}$, and \mathbf{A} for z to be real.

Q2 (Positive definiteness) Let \mathbf{A} and \mathbf{B} be two Hermitian positive definite matrices. Define the matrix

$$
\mathbf{Z}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{O} \\
\mathbf{O} & \mathbf{B}
\end{array}\right]
$$

Prove that \mathbf{Z} is positive definite if and only if both \mathbf{A} and \mathbf{B} are positive definite.
Q3 Solve problem II. 11 of the text book.
Q4 Solve problem II. 12 of the text book.

Q5 Solve problem II. 14 of the text book.

