King Fahd University of Petroleum and Minerals

Department of Electrical Engineering

EE-315-Probabilistic Methods in Electrical Engineering SECOND SEMESTER 2010-2011 (102)

TEXT BOOK:

Peebles, P. Z. "Probability, Random Variables, and Random Signal Principles", McGraw-Hill, 4th Edition, 2001.

HW # 1	1.1-5, 1.2-3, 1.3-7, 1.3-11, 1.4-5, 1.4-11, 15-6, 1.7-1
	Due Date: 28/02/2011

[1.1-5.] {**} (***wat**); {a}, {b}, {c}, {d}; {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}; {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}; {a,b,c,d}.

[1.2-3.] (a) $\overline{A} = S - A = \{6,8,12\}$. (b) $A - B = \{2\}$; $B - A = \{6,8\}$. (c) $A \cup B = \{2,4,6,8,10\}$.

(d) $A \cap B = \{4,10\}$. (e) $\overline{A} \cap B = \{6,8\}$.

(1.3-11)

m kg	0.25	0,50	1.0
10	0.08	0.10	6.01
12	0.20	0.26	0.05
48	0.12.	0.15	0.03
	0.40	0,51	0.09

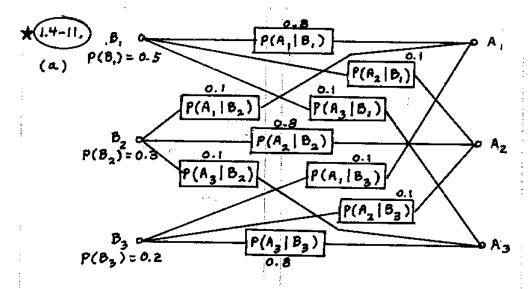
14-5. (a)
$$P(0.01\mu F | box 2) = 95/210$$
.
(b) $P(0.01\mu F | box 3) P(box 3) = P(box 3 | 0.01\mu F) P(0.01\mu F)$
Thuo,
$$P(box 3 | 0.01\mu F) = \frac{P(0.01\mu F | box 3) P(box 3)}{P(0.01\mu F)}$$
From the total probability theorem:
$$P(0.01\mu F) = P(0.01\mu F | box 1) P(box 1)$$

$$+P(0.01\mu F | box 2) P(box 2) +P(0.01\mu F | box 3) P(box 3)$$

$$= \frac{20}{145} \left(\frac{1}{3}\right) + \frac{95}{210} \left(\frac{1}{3}\right) + \frac{25}{245} \left(\frac{1}{3}\right) = \frac{5903}{3(29)42(7)}.$$

Thus,

$$P(\log 3 \mid 0.01 \mu F) = \frac{\frac{25}{245} \left(\frac{1}{3}\right)}{\frac{5903}{3(29)42(7)}} = \frac{870}{5903} \approx 0.1474.$$



(b)
$$P(A_1) = P(A_1|B_1)P(B_1) + P(A_1|B_2)P(B_2) + P(A_1|B_3)P(B_3)$$

 $= 0.9(0.5) + 0.1(0.3) + 0.1(0.2) = 0.45$, $P(A_2) = 0.1(0.5) + 0.1(0.3) + 0.1(0.2) = 0.31$, $P(A_3) = 0.1(0.5) + 0.1(0.3) + 0.8(0.2) = 0.24$. (c)

(c)
$$P(B_1|A_1) = 0.8(0.5)/0.45 = 0.8889$$
, Bayes' rule.
$$P(B_1|A_2) = 0.1(0.5)/0.31 = 0.1613$$

$$P(B_1|A_3) = 0.1(0.5)/0.24 = 0.2083$$

1.4-11.) (Continued)

 $P(B_2 | A_1) = 0.1(0.3)/0.45 = 0.0667$ $P(B_2 | A_2) = 0.8(0.3)/0.31 = 0.7742$ $P(B_2 | A_3) = 0.1(0.3)/0.24 = 0.1250$ $P(B_3 | A_1) = 0.1(0.2)/0.45 = 0.0444$

P(B2 | A2) = 0.1 (0.2)/0.31 = 0.0645

P(B3 | A3) = 0.8(0.2)/0.24 = 0.6667

(d) When $P(B_i) = 1/3$, i = 1, 2, 3, then $P(A_i) = 1/3$ [$P(A_i|B_i) + P(A_i|B_2) + P(A_i|B_3)] = \frac{1}{3} [0.8 + 0.1 + 0.1] = 1/3.$ Similarly $P(A_2) = P(A_3) = P(A_i) = 1/3$ and also $P(B_i|A_k) = 0.1, k \neq i, \text{ and } P(B_i|A_i) = 0.8, i = 1, 2, 3.$

(1.5-6.)

path fails)} = P{(upper path fails) \((lower path fails) \)}

= P(upper path fails) P(lower path fails). But P(upper path fails)

= $P(R_1) + P(R_2 \cap R_3) - P(R_1 \cap R_2 \cap R_3) = \rho_1 + \rho_2^2 - \rho_1 \rho_2^2 = 5.0995(10^{-3})$, and

P(lower path fails) = p2 + p3 - p2 p3 = 12.475 (103). Thus,

P{ signal does not arrive } = 5.0995 (10 3) 12.475 (10 3) = 63.6163 (10 6).

1.7-1.) This is a Bernoulli trails experiment with N=4, p = P(a can is out of tolerance) = 0.03.

(a) $P(4 \text{ out of tolerance}) = {\binom{4}{4}}(0.03)^4(1-0.03)^0 = 8.1(10^7)$.

(b) $P(2 \text{ out of tolerance}) = {\binom{4}{2}}(0.03)^2(1-0.03)^2$ $= \frac{4!}{2!2!}(9)10^4(0.97)^2 \approx 5.081(10^{-3}).$ (c) P(all in tolerance) = P(none is out of tolerance) $= {\binom{4}{0}}(0.03)^0(1-0.03)^4 = (0.97)^4 \approx 0.8853.$