KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS ELECTRICAL ENGINEERING DEPARTMENT SPRING 2010 (102)

EE 315 Probabilistic Methods in Electrical Engineering

OUIZ #1

Name:

ID:

Q1. Consider the experiment of throwing a die. We have the following probability assignments $P(\{1,2,3,4\}) = 0.7$; $P(\{5,6\}) = 0.4$; $P(\{2,4\}) = 0.2$; $P(\{2,4,5,6\}) = 0.7$.

Which probability axioms are not satisfied in this case?

Q2. An experiment consists of tossing (throwing) a fair coin 3 times. Answer the following questions

a) Write down the sample space. How many elements does it contain?

OS= {HHM, HHT, HTM, HTT, THH, THT, TTH, TTT? The sande space contains & elements

b) What is the probability of having of having two heads followed by a tail?

P(HHT) = 1/8

c) What is the probability of having the same side in two consecutive throws (an example is (H, H, T) or (H, T, T)).

Same side in consecutive throws is the following set

A = S HHHH, HTT, THH, TTH, TTT?

Correctly.

 $(4) P|A| = \frac{6}{8} = \frac{3}{4}$

d) What is the probability that the last throw is a tail given that the first is a tail.

$$\beta = \begin{cases} F(r,t) & \text{is a tail} \\ F(R) & \text{is a tail} \\ F(R) & \text{is a tail} \end{cases}$$

$$P(B) = \frac{1}{2}$$

$$P(B) = \frac{1}{2$$

a) What is the probability that the first ball is yellow and the second is green.

$$P(Y_1 \cap G_2) = P(G_1|Y_1) P(Y_1)$$
= $\frac{5}{14} \cdot \frac{10}{15}$ 2

P(Two bills of same color) =
$$P((Y_1 \cap Y_2) \cup (G_1 \cap G_2))$$
 3
= $P((Y_1 \cap Y_2) + P(G_1 \cap G_2))$ because $(Y_1 \cap Y_2) \cap (G_1 \cap G_2)$ because $(Y_1 \cap G_1) \cap (G_1 \cap G_2)$ beca

$$= P(Y_2|Y_1) P(11) + 1 + \frac{4}{14} \cdot \frac{5}{15}$$

$$= \frac{1}{14} \cdot \frac{10}{15} + \frac{4}{14} \cdot \frac{15}{15}$$

$$=\frac{110}{14 \times 15}$$

 $=\frac{2}{11}=1/2$