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Abstract  
 
Computing the exact bit error rate (BER) for square M-ary QAM is tedious and not 
straightforward. However, if a generalized closed-form BER expression can be developed, then 
finding the BER expression will be easier. This has been achieved in [1] and will be described in 
more detail in this paper. 
 
1. Introduction 
 
M-ary Quadrature Amplitude Modulation (QAM) is a widely used modulation technique that 
provides high transmission rates with high bandwidth efficiency and with correct configuration, 
high energy efficiency. However, finding the expression of the bit error probability of M-ary 
QAM is not as straight forward as finding its symbol error probability. For the latter, the Union 
Bound can be used to have a rough estimate of the error performance of a modulation technique 
in terms of symbol error. But this method is not accurate and in the end the more important 
information is the bit error rate (BER) since a communication system ultimately sends 1’s and 
0’s.  
 
This paper will present the derivation of a generalized BER expression for square M-ary QAM. 
Note that the derivation process is explained in [1]. However, most of the intermediary steps 
involved in the process were not shown in [1] and this paper aims to show these steps for easier 
understanding of the derivation.  
 
2. System model and assumptions 
 
Square M-ary QAM involves the amplitude modulation of two carriers in quadrature expressed 
as  ���� � ���	
������� � �� 
���������  � � � � � (1) 

 
where �� and �� are the signal amplitudes of the in-phase and quadrature components 
respectively. T is the symbol duration and �� is the carrier frequency [1].  �� and �� in (1) are 
represented by �	��� level amplitudes which take values of either – ��� � �� !���� �"� !# ! ��� � "� ! ��� � ��  where d is half of the minimum distance between two symbols. 
Note that d can be computed as  

 � �$%&�'()*+�&,-��./0�   (2) 

where 12 is the energy per bit.  
 
For the discussion of this paper, a perfect 2 dimensional Gray code [2] is assumed to be used in 
assigning bits to each point in the QAM constellation. This assures that each symbol differs to its 
nearest neighbours by the minimum number of bits possible. It is also assumed that all the 
symbols are equiprobable. In addition, the noise to be considered in this paper is zero mean 
Additive White Gaussian Noise (AWGN) with variance345�. Finally, it is assumed that there is 
no error contributed by carrier recovery and symbol synchronization. 
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3. Conventional BER derivations 
 
The BER expressions for M-ary square QAM with M = 16, 64 and 256 are first derived using the 
conventional method. Using these equations, a general expression for M-ary square QAM will be 
derived by induction. 
 
3.1 BER of 16-QAM 
 
Figure 1 shows the signal constellation of a square 16-QAM where each symbol is represented 
by four bits constituted by the in-phase bits 60! 6� and quadrature bits 70! 7�. These bits are then 
interleaved to form the sequence 60! 70! 6�! 7� [1]. 
 

 
Figure 1. Signal constellation for square 16-QAM [1] 

 
In Figure 1, the 68! 78��9:��; � �!�� labels indicate the regions where 68 � � and 78 � �. These 
regions will help simplify the BER computations by allowing “divide and conquer” approach 
later on. First, the BER computation for the whole constellation is decomposed into two smaller 
cases. Case 1 ignores bits 6�! 7��while focusing on 60! 70 (focus of section 3.2.a). Doing this 
results to the simplification of Figure 1 to Figure 2.  
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(3) 

 
Figure 2. Signal constellation considering 60! 70 only 

 
In Figure 2, the signal space is divided into four regions A, B, C and D where 60! 70 has fixed 
values 10, 00, 01 and 11 respectively. From this figure, it can also be seen that the bit decision 
can be made according to 
 6��< � �! �=>?�60� � �� 6��< @ �! �=>?�60� � �� 6��A � �! �=>?�70� � �� 6��A @ �! �=>?�70� � ��.  

 
Before the BER computation, recall that in the demodulator, the vector r is received where 
 B � C D E  (4) 
and 

C � � F <AG �H? �E � � I?0?�J .  (5) 

 
In (5), I (in phase component) is represented by the in-phase bits 60! 70 and Q (quadrature 
component) by 6�! 7�. Also, recall that for M = 16 the half distance is given by  
 

 � �$%&�'()*+�&,-��./0� � $%&�'()* 0K�&,-��0K/0� � $�,-L  . (6) 
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Finally, we represent the bit error probability for the kth bit of I and Q as MN�;� e.g. the 
probability that there is an error in the first bits on each component I and Q is expressed as MN���.  
 
3.1.a. Expression for OP�Q� 
 
We can simplify the problem of finding MN��� by decomposing it further into finding MN�60� and MN�70� and then using 
 MN��� � � 0�MN�60� D 0

�MN�70��  (7) 
 
where MN�60� is the probability of bit error for 60 alone and similarly, MN�70� is the probability of 
bit error for 70 alone. Then the total bit error rate for the first bits is simply the average of the 
single bit errors.  
 
3.1.a.i. Deriving OP�RQ� 
 
Fist consider the probability of error for 60. We can compute MN�60� by conditional probability as 
 MN�60� � 0

�MN�60 � �� D 0
�MN�60 � �� (8) 
 

since 60 is equally likely to be 0 or 1 (note that MN�60 � �� is interpreted as probability of bit 
error given 60 � �).When  60 � �, the constellation point can lie in either the left or right of the 
2d axis. Thus, we can also use conditional probability to get 
 MN�60 � �� � 0

�MN�60 � �! S>��� D 0
�MN�60 � �! :6T=�� (9) 

 
where left means 6� � � and right means 6� � � (or simply look at the location of the column in 
the constellation; one will be on the left of the 2d axis and one will be on the right).  
 
But we get a single bit error for the left column when ?0 � �  and the right when ?0 � �" . 
So,  
 MN�60 � �! S>��� � UVW?0 � � X  (10) 
 MN�60 � �! :6T=�� � UVW?0 � �" X  (11) 
 
But since we are dealing with Additive White Gaussian Noise with zero mean and variance equal 
to 34 �Y , we know that  
 

?0Z[ \�! ]^� _  (12) 
so, 
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UVW?0 � � X � A `/a/4b]^ �Y c � A ` a
b]^ �Y c  (13) 

which means that 

MN�60 � �! S>��� � �A ` a
b]^ �Y c.  (14) 

Similarly,  

UVW?0 � �" X � A `/%a/4b]^ �Y c � A ` %a
b]^ �Y c   (15) 

so 

MN�60 � �! :6T=�� � �A ` %a
b]^ �Y c.  (16) 

 
Going back to (9), we now have 

MN�60 � �� � 0
�A ` a

b]^ �Y c D 0
�A ` %a

b]^ �Y c.  (17) 

 
By symmetry, we can get 
 

MN�60 � �� � 0
�A ` a

b]^ �Y c D 0
�A ` %a

b]^ �Y c.   (18) 

Therefore (8) becomes,  
 

MN�60� � 0
� F0�A ` a

b]^ �Y c D 0
�A ` %a

b]^ �Y cG D 0
� F0�A ` a

b]^ �Y c D 0
�A ` %a

b]^ �Y cG  (19) 
 

MN�60� � 0
� FA ` a

b]^ �Y c D A ` %a
b]^ �Y cG.  (20) 

 
3.1.a.ii. Deriving OP�dQ� 

 
If we rotate the whole signal constellation in Figure 1 by 90 degrees clockwise, we get 70 with 
the same configuration as 60. Thus, we can use the same method in finding  MN�70� giving us 
 

MN�70� � 0
� FA ` a

b]^ �Y c D A ` %a
b]^ �Y cG.   (21). 

 
3.1.a.iii. OP�Q� computation 
 
Finally, we can compute the probability of error for the first bits of the I and Q components using 
(7) to get 
 

MN��� � � 0� e0� FA ` a
b]^ �Y c D A ` %a

b]^ �Y cGf D 0
� e0� FA ` a

b]^ �Y c D A ` %a
b]^ �Y cGf�  (22) 

 

MN��� � � 0� FA ` a
b]^ �Y c D A ` %a

b]^ �Y cG.  (23) 

 
We now express (23) in terms of the erfc function using  
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�A�g� � � 0� >:�h \ i
��_.   (24) 

Upon substitution, we get 
 

MN��� � � 0� F0� >:�h ` a
b]^ �Y & 0

��c D 0
� >:�h ` %a

b]^ �Y & 0
��cG  (25) 

  

MN��� � � 0j F>:�h ` a
b]^c D >:�h ` %a

b]^cG.  (26) 

 

But we know that  � $�,-L  from (6). Thus, using this in (26) we get 
 

MN��� � � 0j k>:�h l 0
b]^ & $�,-L m D >:�h l %

b]^ & $�,-L mn (27) 

 

MN��� � � 0j F>:�h `$�,-L]^c D >:�h `"$�,-L]^cG.  (28) 

 
But we also know that the SNR per bit is : � ,-]^� so we can express MN��� in terms of : as in 
 

MN��� � � 0j k>:�h l$�o
L m D >:�h l"$�o

L mn.  (29) 

 
Note that (29) is equation (5) in [1]. 
 
3.1.b. Expression for OP�p� 
 
Now, let us look at the probability of error for the second bits of I and Q. First, just as we did in 
3.2.a, we disregard 60! 70 and consider 6�! 7� only. To get MN���, we take the average of the single 
bit error rates MN�6�� and MN�7�� as in 
 MN��� � � 0�MN�6�� D 0

�MN�7���.  (30) 
 

3.1.b.i. Deriving OP�Rp� 
 
Again, we “divide and conquer” by decomposing the problem into a smaller one. So we first 
consider the bit error probability of 6� 
 MN�6�� � 0

�MN�6� � �� D 0
�MN�6� � �� .    (31) 

 
If 6� � �!  the point has two possible positions – left or right of the Q-channel axis. Thus we can 
have  
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MN�6� � �� � 0
�MN�6� � �! S>��� D 0

�MN�6� � �! :6T=��      (32) 
 

where left means 60 � � (left of Q-channel axis) and right means 60 � �  (right of Q-channel 
axis). But it is clear that we get an error for the points in the left column when " � ?0 � �  
and the points on the right column when  � ?0 � �" . So we have 
 MN�6� � �! S>��� � UV�W" � ?0 � � X (33) 
and MN�6� � �! :6T=�� � UV�W � ?0 � �" X. (34) 
 

But we know that ?0Z[ \�! ]^� _  so, 
 

UVW" � ?0 � � X � A `/a/4b]^ �Y c D A ` %a/4
b]^ �Y c � �A ` a

b]^ �Y c D A ` %a
b]^ �Y c .  (35) 

 
Thus,   

MN�6� � �! S>��� � �A ` a
b]^ �Y c D A ` %a

b]^ �Y c.  (36) 

 
Similarly,  

UV�W � ?0 � �" X � A ` a/4
b]^ �Y c D A `/%a/4b]^ �Y c � �A ` a

b]^ �Y c D A ` %a
b]^ �Y c   (37) 

so, 

MN�6� � �! :6T=�� � �A ` a
b]^ �Y c D A ` %a

b]^ �Y c. (38) 

 
Going back to (32), we now have 
 

MN�6� � �� � 0
� FA ` a

b]^ �Y c D A ` %a
b]^ �Y cG D 0

� FA ` a
b]^ �Y c D A ` %a

b]^ �Y cG   (39) 

which simplifies to 

MN�6� � �� � A ` a
b]^ �Y c D A ` %a

b]^ �Y c.  (40) 

 
Next we look for MN�6� � �� by using  
 MN�6� � �� � 0

�MN�6� � �! S>��� D 0
�MN�6� � �! :6T=�� (41) 

 
where left means 60 � � (left of -2d axis) and right means 60 � � (left of -2d axis). But we get an 
error for the points on the left column when  � ?0 � q  and �q � ?0 � �  for the points on 
the right column. This can be expressed as,  
 MN�6� � �! S>��� � UVW � ?0 � q X .   (42) 
and 

MN�6� � �! :6T=�� � UVW�q � ?0 � � X � A ` a
b]^ �Y c � A ` La

b]^ �Y c..   (43) 
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But since ?0Z[ \�! ]^� _  we can get UVW � ?0 � q X � A ` a/4
b]^ �Y c � A ` La/4

b]^ �Y c � �A ` a
b]^ �Y c � A ` La

b]^ �Y c.   (44) 
 
Thus,   

MN�6� � �! S>��� � �A ` a
b]^ �Y c � A ` La

b]^ �Y c.  (45) 

 
Similarly,  

UVW�q � ?0 � � X � A `/a/4b]^ �Y c � A `/La/4b]^ �Y c � �A ` a
b]^ �Y c � A ` La

b]^ �Y c (46) 

giving us 

MN�6� � �! :6T=�� � �A ` a
b]^ �Y c � A ` La

b]^ �Y c. (47) 

 
Now that we have (45) and (47), we can find (41) as 
 

MN�6� � �� � 0
� FA ` a

b]^ �Y c � A ` La
b]^ �Y cG D 0

� FA ` a
b]^ �Y c � A ` La

b]^ �Y cG  (48) 

and  

MN�6� � �� � A ` a
b]^ �Y c � A ` La

b]^ �Y c .  (49) 

 
We now use (40) and (49) in (31) to get 
 

MN�6�� � 0
� FA ` a

b]^ �Y c D A ` %a
b]^ �Y cG D 0

� FA ` a
b]^ �Y c � A ` La

b]^ �Y cG  (50) 

 

MN�6�� � 0
� F� & A ` a

b]^ �Y c D A ` %a
b]^ �Y c � A ` La

b]^ �Y cG  (51) 

 
3.1.b.ii. Deriving OP�dp� 
 
If we rotate the whole signal constellation 90 degrees clockwise, 7� will be in the same 
configuration as 6� as in the previous section. Thus, we will get the the same computation and 
values leading to 
 

MN�7�� � 0
� F� & A ` a

b]^ �Y c D A ` %a
b]^ �Y c � A ` La

b]^ �Y cG.    (52) 

 
3.1.b.iii. OP�p��computations  
 
Finally, we can compute the probability of error for the second bits of the I and Q components 
using (51) and (52) in (30) as 
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MN��� � � 0� e0� F� & A ` a
b]^ �Y c D A ` %a

b]^ �Y c � A ` La
b]^ �Y cGf D 0

� e0� F� & A ` a
b]^ �Y c D A ` %a

b]^ �Y c �
A ` La

b]^ �Y cGf�   (53) 

which simplifies to 
  

MN��� � � 0� F� & A ` a
b]^ �Y c D A ` %a

b]^ �Y c � A ` La
b]^ �Y cG. (54) 

 

Using  A�g� � � 0� >:�h \ i
��_ in (54), we get, 

 

MN��� � � 0� F� & 0� >:�h ` a
b]^ �Y & 0

��c D 0
� >:�h ` %a

b]^ �Y & 0
��c � 0

� >:�h ` La
b]^ �Y & 0

��cG (55) 

and 

MN��� � � 0j F� & >:�h ` a
b]^c D >:�h ` %a

b]^c � >:�h ` La
b]^cG.   (56) 

 

Using  � $�,-L  in MN���! we get 
 

MN��� � � 0j k� & >:�h l 0
b]^ & $�,-L m D >:�h l %

b]^ & $�,-L m � >:�h l L
b]^ & $�,-L mn  (57) 

and 

MN��� � � 0j F� & >:�h `$�,-L]^c D >:�h `"$�,-L]^c � >:�h `q$�,-L]^cG.  (58) 

 
But we know that the SNR per bit is : � ,-]^� so we can express MN��� in terms of : as 
 

MN��� � � 0j k� & >:�h l$�o
L m D >:�h l"$�o

L m � >:�h lq$�o
L mn (59) 

Note that this is equation (8) in [1]. 
 
3.1.c. Exact expression for square 16-QAM bit error rate 
 
Now that we have MN��� and MN���, we can compute for the bit error probability for square 16-
QAM by taking the average of the conditional error probabilities using  
 MN � 0

�r MN�;��8s0 .  (60) 

Note that this is equation 9 in [1]. 
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3.2. BER of 64-QAM 
 
Figure 3 shows the signal constellation for a square 64-QAM where each symbol is represented 
by six bits interleaved – 60! 70! 6�! 7�! 6%! 7%. Also, note that �

 � �$%&�'()*+�&,-��./0� � $%&�'()* Kj�&,-��Kj/0� � $,-t .  (61) 

 

 
Figure 3. Signal constellation of square 64-QAM [1] 

 
We can find the probability of bit error expression by implementing the same method we used in 
the previous section but we consider three cases this time – MN���, MN��� and MN�"� where MN�;� 
indicates the probability that the kth  bit of I and Q are in error.  
 
The resulting expressions for MN���, MN��� and MN�"� are  
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MN��� � � 0u F>:�h `$o
tc D >:�h `"$o

tc D >:�h `q$o
tc D >:�h `v$o

tcG ,  (62) 

 

MN��� � � 0u F� & >:�h `$o
tc D � & >:�h `"$o

tc D >:�h `q$o
tc D >:�h `v$o

tc � >:�h `w$o
tc �

>:�h `��$o
tcG , (63) 

and 

MN�"� � � 0u Fx & >:�h `$o
tc D " & >:�h `"$o

tc � " & >:�h `q$o
tc � � & >:�h `v$o

tc D � &
>:�h `w$o

tc D >:�h `��$o
tc � >:�h `�"$o

tcG  (64) 

 
which are equations (11), (13) and (15) respectively, taken from [1]. And just as in the previous 
section, we get the final BER by averaging using 
 MN � 0

%r MN�;�%8s0 .   (65) 
 
3.3. BER of 256-QAM 
 
For 256-QAM, each symbol is represented by eight interleaved bits – 60! 70! 6�! 7�! 6%! 7%! 6j! 7j. 
Also, note that 
 

 � �$%&�'()*+�&,-��./0� � $%&�'()* �LK�&,-���LK/0� � $j,-uL  .  (66) 

 
And just as in section 3.1, we can derive the expressions for MN���, MN���, MN�"� and MN�x� as 
 

MN��� � � 00K k>:�h l$Lo
jum D >:�h l"$Lo

jum D >:�h lq$Lo
jum D >:�h lv$Lo

jum D >:�h lw$Lo
jum D

>:�h l��$Lo
jum D >:�h l�"$Lo

jum D >:�h l�q$Lo
jumn , (67) 

 

MN��� � � 00K k� & >:�h l$Lo
jum D � & >:�h l"$Lo

jum D � & >:�h lq$Lo
jum D � & >:�h lv$Lo

jum D
>:�h lw$Lo

jum D >:�h l��$Lo
jum D >:�h l�"$Lo

jum D >:�h l�q$Lo
jum � >:�h l�v$Lo

jum �
>:�h l�w$Lo

jum � >:�h l��$Lo
jum � >:�h l�"$Lo

jumn,  (68) 
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MN�"� � � 00K kx & >:�h l$Lo
jum D x & >:�h l"$Lo

jum D " & >:�h lq$Lo
jum D " & >:�h lv$Lo

jum � " &
>:�h lw$Lo

jum � " & >:�h l��$Lo
jum � � & >:�h l�"$Lo

jum � � & >:�h l�q$Lo
jum D � &

>:�h l�v$Lo
jum D � & >:�h l�w$Lo

jum D >:�h l��$Lo
jum D >:�h l�"$Lo

jum � >:�h l�q$Lo
jum �

>:�h l�v$Lo
jumn,  (69) 

 
and  
 

MN�x� � � 00K ky & >:�h l$Lo
jum D v & >:�h l"$Lo

jum � v & >:�h lq$Lo
jum � z & >:�h lv$Lo

jum D z &
>:�h lw$Lo

jum D q & >:�h l��$Lo
jum � q & >:�h l�"$Lo

jum � x & >:�h l�q$Lo
jum D x &

>:�h l�v$Lo
jum D " & >:�h l�w$Lo

jum � " & >:�h l��$Lo
jum � � & >:�h l�"$Lo

jum D � &
>:�h l�q$Lo

jum � >:�h l�v$Lo
jumn�    (70) 

 
which are equations (18), (20), (22) and (24) in [1], respectively. 
 
Finally, the final BER for 256-QAM is computed using equation (25) in [1] given by 
 MN � 0

jr MN�;�j8s0 .   (71) 
 
4. General BER Expression for Square M-ary QAM 
 
Now that we have the expressions for the conditional probabilities for M = 16, 64 and 256, we 
can use induction to determine a regular pattern in the expressions. The first observation is that 
for M = 16, 64 and 256, each conditional probability MN�;� has a factor of  0�. .  
 
For the next discussion, let us use the following notation (for conciseness and this will help see 
the patterns easier later on):  
 

MN�;� � � 0
�. Fr{ & >:�h `|$%�'()*.�&o

��./0� cG � 0
�.r}{! |~    (72) 

 
so that we can represent for example for M = 16,  
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MN��� � � 0j F� & >:�h `$�,-L]^c D >:�h `"$�,-L]^c � >:�h `q$�,-L]^cG � 0
j W}�!�~ D }�!"~ D }��!q~X. 

(73) 
 
Thus, if we temporarily disregard the factor, we can represent MN��� or any MN�;��with just the }{! |~ values as shown in the next tables. 
 

Table 1. }{! |~�components of MN����for M = 16, 64 and 256 
 

k = 1 
M = 16 M = 64 M = 256 
1,1 1,1 1,1 
1,3 1,3 1,3 
  1,5 1,5 
  1,7 1,7 
    1,9 
    1,11 
    1,13 
    1,15 

 
From Table 1, we can observe that for k = 1, R is always equal to 1 and there are ��5� terms. 
Also, the S values are always increasing as 1, 3, 5, 7... for k = 1.  
 

Table 2. }{! |~� components of MN��	�� ��� for M = 16, 64 and 256 
 

k = �	�� �� 
M = 16 (k = 2) M = 64 (k = 3) M = 256  (k = 4) 
2,1 4,1 8,1 
1,3 3,3 7,3 
-1,5 -3,5 -7,5 
  -2,7 -6,7 
  2,9 6,9 
  1,11 5,11 
  -1,13 -5,13 
    -4,15 
    4,17 
    3,19 
    -3,21 
    -2,23 
    2,25 
    1,27 
    -1,29 
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For  ; � �	�� �� (highest value of k for any M), we observe that the S values are increasing as 
1, 3, 5, 7... which is similar to that in ; � �. Another observation is that R starts with  ��5� and 
decreases (absolutely) and it continuously changes sign until it reaches -1 [1].   
 

Table 3. }{! |~� components of MN�;� for M = 16, 64 and 256 for other values of ; 
 

M = 64 (k = 2) M = 256 (k = 2) M = 256  (k = 3) 
2,1 2,1 4,1 
2,3 2,3 4,3 
1,5 2,5 3,5 
1,7 2,7 3,7 
-1,9 1,9 -3,9 
-1, 11 1,11 -3,11 
  1,13 -2,13 
  1,15 -2,15 
  -1,17 2,17 
  -1,19 2,19 
  -1,21 1,21 
  -1,23 1,23 
    -1,25 
    -1,27 

 
For other values of k, similar (but not exactly the same) rules apply, that is S increases as 1, 3, 5, 
7... and R starts with ��5� and decreases (absolutely) and it continuously changes sign until it 
reaches -1. Each term for each conditional probability MN�;� can be indexed by � � �! �! �#��� � �/8� & �� � �, where  �� � �/8� & �� is the actual number of terms per 
conditional probability. As we can see from Table 3, the pattern for M = 256, k = 2 is slightly 
different due to the fact that MN��� has �� � �/�� & ��qz � �� terms and R has to start with ��5� and end with -1.  
 
More generally, the following formula for conditional bit error probability is derived:  
 

MN�;� � 0
�.r �������&*����� � & \�8/0 � ��&�����. � 0

��_ & >:�h ��� & � D�0/����&�./0�s4

��$%�'()*.�&o
��./0� m� �    (74) 

 
where �g� denotes the largest integer not grater than x;  also called floor function. Note that this 
is equation (27) from [1].  
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Given this formula, the conditional probabilities can be computed. Finally, the exact Bit Error 
Rate for a square M-QAM where � � �] and N is even can be obtained by averaging (equation 
(28) in [1]), 
 

MN � 0
'()* �.r MN�;�'()* �.8s0 .  (75) 

 
5. Observations 
 
Given (74) and (75) we can now get an expression for a square M-ary QAM system where � � �] and N is even.  
 
For M = 4, equation (75) reduces to the BER of quadrature phase shift keying (QPSK) signal [1].  
 

MN � 0
'()* �jr MN�;�'()* �j8s0      (76) 

 

MN��� � 0
�jr �������&*����� � & \�0/0 � ��&�����j � 0

��_ & >:�h ��� & � D ��$%�'()* j�&o��j/0� ���0/����&�j/0�s4  

(77) 
 

MN��� � 0
�r F������*� & \� � ���� 0

��_ & >:�h \�� & � D ���:_G �4�s4 �0� ����4 & �� � �� &
>:�h \�� & � D ���:_  (78) 

 MN � 0
� >:�h��:�  (79) 
   

Equation (79) is equation (29) in [1] (with a difference in the radical sign, possibly a 
typographical error in the paper) and to check for correctness, we do a conventional derivation of MN.  
 
Figure 4 below shows the constellation for M = 4.  

 
Figure 4. Signal constellation for M = 4 
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Using the method we applied in section 3.1, we get  
 MN �� 0�MN�60� D 0

�MN�70�.    (80) 
 

But  MN�60� � UV�W?0 �  X    (81) 
and MN�70� � UV�W?0 � � X.   (82) 
 

But since ?0Z[ \�! ]^� _  we can get UVW?0 �  X � A ` a/4
b]^ �Y c � �A ` a

b]^ �Y c � MN�60�  (83) 

and  

UVW?0 � � X � A `/a/4b]^ �Y c � �A ` a
b]^ �Y c � MN�70�.    (84) 

Thus,  

MN �� 0�A ` a
b]^ �Y c D 0

�A ` a
b]^ �Y c = A ` a

b]^ �Y c�.   (85) 

 
And finally, expressing (85) in terms of erfc and using  
 

 � �$%&�'()*+�&,-��./0� � $%&�'()* j�&,-��j/0� � b12  (86) 

we get  

MN � A `$ ,-]^ �Y c � 0
� >:�h��:�   (87)  

which verifies our result in (79). 
 
As an additional observation, we note that the derivation of (74) and (75) is highly dependent on 
the bit assignments for each point in the constellation. Thus, changing the assignments would 
change the probability of bit error. Finally, we also observe that it is helpful to use bit 
assignments that result to symmetry among the bit level decision regions since symmetries 
simplify the actual computations (at least for the conventional method). 
 
6. Conclusion 
 
This paper was able to describe the derivation in [1] of a closed BER expression for a coherent 
Gray coded M-ary square QAM signal in an AWGN channel. The method involved the 
derivation of the BER expressions for M = 16, 64 and 256 using the conventional method and 
then using the derived expressions in the induction technique to arrive at a generalized BER 
expression. We have seen from section 3.1 that deriving the exact BER expression is very 
tedious and not straightforward. But using the derived expressions (74) and (75) makes the 
computations much more convenient as demonstrated in section 5.  
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