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Abstract 
In this paper, a review and discussion of another paper 
entitled, “Bit Error Probability of M-ary Quadrature 
Amplitude Modulation” [4] is presented. The mentioned 
paper above derived a general expression for the bit error 
rate (BER) of an M-ary square QAM. The derivation of 
the BER expression uses the advantages of the Gray Code 
bitmapping and assumed the presence of Additive White 
Gaussian Noise or AWGN (zero mean with variance N0/2) 
 
1. Introduction 
 

Error rates are usually presented by either using the 
computation of symbol error rates or by estimation using 
union bounds. One of the reasons behind the lack of 
expressions of the bit error rate (BER) is that the exact 
analysis of the BER is complicated and it is usually not 
expressed in closed-form solutions. Also, the 
transformation of the symbol error rate to BER is not 
straightforward.  

So why do we need to modulation efficiency in terms 
of the BER? It is because the estimation using union 
bounds does not guarantee accuracy and at the end of the 
day we want to differentiate the efficiencies of the 
different types modulations in terms of their very basic 
unit of representation, bits 

Signal waveforms corresponding QAM can be 
expressed as 
 

                 
 

where g(t) is the signal pulse and Ami and Amq (in-phase 
and quadrature phase components) are the signal 
amplitudes of the quadrature carriers which takes the 
assumed set of discrete values 
 

 

 
This set of values represents a QAM that has a rectangular 
diagram or constellation. A special case of a rectangular 
QAM is an M-ary square QAM. An M-ary square QAM 
(i.e., ) has its signal amplitudes take 
on the values of  on both 
directions where d is the Euclidean distance between 
adjacent points in the constellation. Given equations (3), 
(4), (5), and (6), we can compute the distance d in terms 
of , the average energy per bit which will be very 
useful in the computation of BER. 
 

 

, 

, 

 

 
Using the equations above, we obtain the new expression 
of d in terms of the average energy per bit, 
 

. 

 
As with the original paper, assumptions should be stated 
before proceeding with the computation. It is assumed 
that all symbols are equiprobable and that a perfect 2 
dimensional Gray Coding method is used. Also, a zero-
mean additive white Gaussian noise is assumed with 
variance N0/2. Lastly, we assume that for simplicity, 
perfect carrier recovery and symbol synchronization is 
attained.  
 
2. BER Computations of Square QAM. 
 
2.1. BER of 4-QAM 
 

 
Figure 1: 4-QAM Constellation. 

 
We first analyze the simplest square QAM 

constellation, 4-QAM, as illustrated in Figure 1 above. 
The bit assignment uses the Gray Code mapping method. 
The vertical axis is the Q-channel and the horizontal is the 
I-channel. Bit assignment is in the order of i1q2. We can 
see that if  and if . The same goes 
when  and  would result to  and  
respectively. We can also observe that an error would 
occur if the noise is greater d when i1 = 1 and if the noise 
is less that d when i1 = 1. The next set of computations 
presents the computation of Pb(k), the probability that the 
kth bit of the in-phase and quadrature phase components 
are in error in terms of . We first solve for the 
probability of bit error given the first in-phase component, 
Pb|i1 and then solve for Pb|q1. 

 

 



 
 

We can now get Pb|i1, 
 

 

 
Solving for the above equation in terms of the SNR per 

bit  and the erfc( ) function where 

 

 
we get, 
 

 

 
We then substitute the value of d from (7) with M = 4, we 
get, 
 

 

 
After getting the probability of bit error given the in-
phase component, we need to solve the probability of bit 
error given the quadrature component. But it easily 
observed that if we rotate the constellation, we would be 
getting the same probability, thus, 
 

 

 
Solving for Pb(1) is as simple as averaging the probability 
of bit error of the 1st bit of the in-phase and quadrature 
components. This would give us, 
 

 

 
 

 
 
 
 
 
 
 

2.2. BER of 16-QAM 
 

 
Figure 2: 16-QAM Constellation. 

 
  

We start by analyzing the bit assignment (i1q1i2q2) of 
the constellation points. We can see that if  
and if . The same goes when  and  
would result to  and  respectively. With this 
we could separate the constellation above into 4 regions 
the same as a 4-QAM constellation. In this case, an error 
would occur when the noise is either greater than d or 3d. 
The next set of computations presents the computation of 
Pb(1), the probability that the 1st bit of the in-phase and 
quadrature phase components are in error in terms of . 
We first solve for the probability of bit error given the 
first in-phase component, Pb|i1. 

 

 

 

 

 
Solving for the above equation in terms of the SNR per 

bit  and the erfc( ) function, we get, 

 

 



 
We then substitute the value of d from (7) with M = 16, 
we obtain, 
 

 

 
After getting the probability of bit error given the in-
phase component, we need to solve the probability of bit 
error given the quadrature component. But it is also easily 
observed that if we rotate the constellation, we would be 
getting the same probability, thus, 
 

 

 
Solving for Pb(1) is as simple as averaging the probability 
of bit error of the 1st bit of the in-phase and quadrature 
components. This would give us, 
 

 

 
   We now shift our focus to the last two bits (i2q2) of the 
symbols. We can see that that the bounds for the decision 
regions are the lines and . From the 
regions formed, the bit error cases could now be 
distinguished. It is easily noted that If I,Q < -2d then 
i2,q2= 1. If -2d < I,Q < 2d then i2,q2= 0. And If I,Q > 2d 
then i2,q2= 1. 

Solving for Pb|i2,  
 

 

 

 

Solving for the above equation in terms of the SNR per 

bit  and in the erfc( ), we get, 

  
Since it is obvious, as with Pb(1), the quadrature phase 

component of Pb(2) is just equal to the in-phase 
component and therefore averaging it to get Pb(2) yields, 

 

 

We have just now computed the probability of bit 
error for a 16-QAM constellation. It is computed by 
averaging the conditional probabilities in Equations (15) 
and (21). It would result to, 

 

 

 
2.3. BER of 64-QAM 

 

 
Figure 3: 64-QAM Constellation. 

 
In the figure above, each constellation point is 

represented by a 6-bit symbol composed of three bits each 
from of the in-phase and the quadrature components, 
(i1q1i2q2i3q3).  

We consider first the first two bits, i1 and q1, which are 
the first bit of each component. We can see that this case 
is just the same as the first case for 16-QAM where for

 and for . The same goes when 

sequence il, q l ,  i2,  q z ,  i3, q3 (see also the signal 

constellation shown in Figure 2). 
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Figure 2. Square 64-QAM signal constellation. 

Similar to case of 16-QAM7 there are tbree possible 
cases (case I, 11, 111) of the conditional error probabilities 
depending on which bits on I and Q components are 

being in error [ 11. 
In the case I, two orthogonal lines crossing the origin 

become the decision boundaries while the most 
sipficant bits il , q, are recovered according to 

(10) 
if Z,Q<O, then il,ql =1 i if Z,Q20, then il,ql = 0 '  

Then the error probability of the first bits on each 
component can be expressed as follows: 

For the case 11, the dotted lines crossing -4d and 4d 

are the corresponding decision boundaries and also the 

bits i2 , q2 are recovered according to 

if I , Q < - 4 d ,  then i2 ,q2=1 

if - 4 d I I , Q < 4 d ,  then i2,q,=0 (12) 

if I , Q 2 4 d ,  then i2,q2 =1 

in Equation (2). 

In this case, the error probability of the second bits on 
each component can be expressed as: 

. (13) 

Finally, for the case 111, the lines crossing at -6d , 
-2d, 2d and 6d are the corresponding decision 

boundaries and the least significant bits ( i3 , q3 ) are 

recovered according to 

if Z,Q<-6d, then i3,q3 =1 

-6d I I ,Q < -2d, then i3,q3 = 0 1 - 2 d I I , Q < 2 d ,  then i3,q3=1 . (14) 

Therefore, the probability that the third bits on each 

if 2d<-17Q<6d, then i,,q,=O 

if I , Q 2 6 d ,  then i3,q, =1 

component are being in error is given as follows: 

1 

8 
Pb (3)  = - 

At this point, we can obtain the bit error probability 
for square 64-QAM signal by averaging three conditional 
probabilities given in Equations (1 l), (13) and (19, that 
is, 

3.3. BER of 256-QAM 

In this section, we consider the square 256-QAM 

similar to the cases of 16 and 64-QAM in previous 
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 and  would result to  and  
respectively. 

 

 

 

 

 
Substituting d (using Equation (7) with M=64) and 

solving the above equation in terms of the SNR per bit 

 in the erfc( ) function we get, 

 
 

Similarly,  
 

 

Solving for Pb(1), 
 

 

For the second case, we consider the next two bits, i2 
and q2. Observing the constellation, we can see that the 
regions are determined by the bounds and 

. Specifically, if I, Q < -4d or I, Q > 4d then i2, 
q2 =1. If -4d <I, Q < 4d then i2, q2 =0. We could also see 
that each quadrant of the constellation is composed of 16-
QAM where we could use this to get Pb(2), the 
probability that the 2nd bit of the in-phase and quadrature 
phase components are in error in terms of . Using the 
same procedure as with the first case, we get, 

 

 

 
For the last case, we consider the last two bits, i3 and 

q3. The decision regions are bounded by the lines 
and . In this case, we can see that each quadrant 
of the 64-QAM is composed of 4 sets of 4-QAM (each on 
the quadrants of the 16-QAM described in the second 
case). Using these facts and the previous procedures, we 
get Pb(3), the probability that the 3rd bit of the in-phase 

and quadrature phase components are in error in terms of 
 as, 

 

 

We have just now computed the probability of bit 
error for a 16-QAM constellation. It is computed by 
averaging the conditional probabilities in Equations (15) 
and (21). It would result to, 

 

 

 
2.3. General BER Expression for M-ary Square 
QAM 
 

If we continue the same procedure for M = 256, 1024, 
4096… , we would see that the general expression for the 
M-ary Square QAM is  

 

 

 
3. Conclusion 
 

In this paper, we have just presented a review of the 
general expression for the BER of an M-ary Gray-coded 
square QAM over an AWGN channel. From the 
computations above, we see that the derivations always 
take into consideration the fact that square QAM’s are 
symmetrical and we don’t need to complete the 
computations. It is also important to easily distinguish the 
decision regions specified by the bounds. With the right 
bounds, the probability of bit error would be determined 
correctly by the position of the bits and the noise 
associated to it.  
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