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Abstract – Lately a new form of the Gaussian Q function has been used and it has been shown to 
be very useful in evaluating the probability of error performance for various modulation schemes 
over generalized fading channels. In this work, we will demonstrate this new form (definite 
integral) and we will try to give another easier approach to have such forms. The basic trick was 
to introduce the unit step function in the integral of the Q function and then replace it with its 
Fourier transform. This will produce a multi-dimensional integral that can be evaluated with the 
use of multivariate Gaussian Joint PDFs in matrix form. We will try to extend our approach to 2-
dimentional alternative Gaussian Q-function Q(x,y,�), and focus on a specific case of it where x = 
y and � � �� 
  



3 
 

I. Introduction 

Q function is widely used in communication and this is because of its special mathematical 
representation and characteristics. It is defined as the complement of the CDF corresponding to a 
normalized Gaussian random variable �.  The canonical representation of Q(x) is a semi finite 
integral of the PDF of the corresponding RV.  

���	 � 
� ��� ���
���

� �� 

This representation suffers from 2 disadvantages. When using algorithmic techniques or numerical 
integral evaluation, it is better to have a truncated upper limit, and this happens in the case of pure 
AWGN channel. The other problem is the presence of the variable � in the lower limit of the 
integral, and this is a problem when � depends on other random parameters that require further 
statistical averaging over their probability distribution, and this is the case for fading channels. 
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And the BER would be 
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where parameter 7 is a function of the set of fading amplitudes {��}, g is a constant that differs per 

each modulation and 
9:;< is the received SNR per bit. 

In the latter the argument of Q depends on the fading amplitudes of the received signals. Thus to 
evaluate the average BER we must average the BER (which is a Q function) over the fading 
amplitude distributions.  
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And here comes the problem in which it is hard to evaluate the average over a random variable that 
appears in the lower limit of an integral. Therefore a lot research over several years was done to try 
to put the random variable inside the integral. Craig found an alternative form. 
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Using Craig’s form it will be easier to evaluate the average BER for several modulation schemes 
under fading channels.  
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 Now having the random variable independent of the integral limits, we can change the order of the 
integrals and hereby ease its evaluation. 
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This also extends to the �-Dimensional �
– function where in several modulation schemes the SER 
rate is expressed in terms of  

�
��N �	 � 
� � RSTU+NU�V�
� 
�U�

�  

where  

RSTU+NU�V � 
 +T�LV�WXYZ[\]^_X��H�`a\]`_GHS

 
is the Gaussian joint PDF of the joint Gaussian RVs b+ and b�. Then additional averaging is needed in 
terms of the probability distributions of  � and � and we will face the same problem as in the 1-
Dimensional Q –function where the random variables we are averaging over are in the limits of the 
integral.  

For example for the case of M-QAM where (M =�c), the SER rate is expressed as  

,I�./ de	 � f >� #
 �g@�TW�4hijdeV # 
f >� #
 �g@
� ��TW�4hijdeV 

where 4hij

= 3/[2(M-1)] and de is the received SNR per symbol. 

Thus the average SER would be the averaging of SER = ,I�./ de	 over the distributions of de.  

,I�.	 � � f>� #
 �g@�TW�4hijdeV # 
f >� #
 �g@
� ��TW�4hijdeV�

6 Akl�de	
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We are averaging over dewhich is in the limits of the integral of a �� - function. 

To avoid this problem we would also need some kind of closed form expression of ���N �/ m	 where 
we can evaluate 

����	 � 
���N �/ m � P	 
where the RVs are inside the integral so we can also make a change in the order of the integral to 
integrate first the RVs. 
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Simon found a closed form expression for ���N �/ m	 
���N �/ m	 � 
 ���� W� # m�� # m"n&�M �>�o

�� HGpqrs�tTHGp�Vqrs�t@�Mu�GvwKGHCo
6

%
 ���� W� # m�� # m"n&�M �>�C
�� HGpqrs�tTHGp�Vqrs�t@�MNvwKGHCo
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Moreover, from the above equation he found a closed form expression for ����	 
����	 � 
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which can solve our problem and ease the evaluation of the BER. 

Now in this paper we will try to show an alternate approach for the 1-Dimensional Craig’s form of 
the Q- function as well as we will try to give an alternate form of the 2-Dimensional Q function 
whose integral is independent of the RVs in the case of ����	. Our approach will be based on using 
an easier way to reach the required results. The basic trick was to introduce the unit step function 
in the integral of the Q function and then replace it with its Fourier transform. This will produce a 
multi-dimensional integral that can be evaluated with the use of multivariate Gaussian Joint PDFs in 
matrix form. We will try to extend our approach to 2-dimentional alternative Gaussian Q-function ���N �N m	, and focus on a specific case of it where �
 � 
� and y � P� 
 

  



6 
 

II. Alternative Formulation of the Q Function 
 

A. 1-Dimensional Gaussian Q-Function 

The alternative representation of the Q function derived by Craig 

���	 � 
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In the following we show how to derive these representations in a natural manner. 

The 1-Dimensional Q- function is the probability that the real Gaussian variable z
{
|�PN�	 
satisfies   

�
��	 � ,�z } �	 � 
 ���� ������
� ��
 

Using the unit step function, this can be written as 

�
��	 � ���� ������
�� ~
�� # �	�� 

~
�� # �	 upon using its Fourier transform is 

~�� # �	 � 
 ���� �����	����
�	�� % 
� 
���
��  

And therefore this will result to 

�
��	 � 
 ���� ������
��

���� �����	����
�	�� % 
��
�� ���� 

where we complete the square with respect to � 

�
��	 � 
 ���� �������
�	�� % 
��
��

��� �H�����
�	�� ��H��C�G�C����
�	�
����
�	�	�
�� ���� 

and by realizing the inner integral sums out to unity 

���� ��H��CG

����
�		��
�� �� � � 

since referring to the Eq (3.462 - 4) in the textbook [3] 

� �K�
�� ������	��� � ��n	�K��K�n�	 

Selecting &
 � 
P  and  � � 
 ��
 and � � 
 ����
�	� ,  we will have: 

��� ��� C������
�	� 	����
�� �
�
�6 >n ��� % 
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But �6 �n ����
�	� � � �N thus 

��� ��� C������
�	� 	����
�� �
� 

or 

���� ��H��CG

����
�		��
�� �� � � 

Then, 

�
��	 � 
 ���� �������
�	�
H�����
�	��� % 
��
�� �� 

Now introduce the change of variable � �
#���� MN ���&
�� � 
��� % ����M	�M 

�
��	 � 
 ���� ���������v �
�	�
H��G�����t�
�	�#�����M % 
�L
6 ��� % ����M	�M 
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 ���� ��������v ���	
�
H��G����v ��
���
������v 	L
6 �� % ����M	�M 

 
Knowing � O P, set � � �
 O P. Then 
 

�
��	 � 
 ���� �T������v ���V
�
H��G����v ��
���
������v 	L
6 �� % ����M	�M
� 
 ���� ����
�
H��G����v ��
��	L

6 �� % ����M	�M
� 
 ���� ��H����+���v �	
L

6 �� % ����M	�M 

 
The imaginary part is odd and hence integrates to zero while the even part can be simplified 
to 

�
��	 � 
 ���� �GH�> ��IJK� @L
6 �M 

"n&�M
is even in the interval \P
N �_; therefore, 

���	 � 
 ��� �GH�� ��IJK� 	

L�
6 �M 

which is the form derived by Craig. 
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B. 2-Dimensional Gaussian Q-Function 

Simon derived an alternative form for the 2- Dimensional Q function 

���N �/ m	 � 
 ���� W� # m�� # m"n&�M �>�o
�� HGpqrs�tTHGp�Vqrs�t@�Mu�GvwKGHCo

6
%
 ���� W� # m�� # m"n&�M �>�C

�� HGpqrs�tTHGp�Vqrs�t@�MNvwKGHCo
6 

�N � O P 

We notice that the variables x and y are inside just one integral and no more double integral. 

Now we will extend our derivation to the 2-Dimensional Q function, we will try to use the method 
we used before to remove the variables (x, y) from the limits of the double integral and try to 
achieve a single integral instead of a double one.  

The 2-Dimensional Q- function is the probability that the real joint Gaussian variables b+
�&�
b� 
having the joint PDF 

RSTU+NU�V � 
 H��u	�WX���\��_X��H�`a\]`_GHS  

�����
\ S_JN� � ��¡¢UJN U�£ � m^rN^�¤^r¤^� 
�&�
b � 
 ¥U+U�¦ 
satisfies   

�
��N �/ 
m	 � ,�b+ } �
�&�
b� } �	 � � � RSTU+NU�V�
�

�
� �U
 

Using the unit step function, this can be written as 

�
��N �	 
� 
� � RSTU+NU�V�
� 
�U ��

� � � RSTU+NU�V�
�� ~�U� # �	~�U� # �	
�U�

��  

~�U� # �	
�&�
~�U� # �	 upon using their Fourier transform would be 

~
�U+ # �	 
� 
 ���� ��^H��	���H�
�H	��+ %
�+
�
�� ��+




 
§¨© 






~
�U� # �	 � 

 ���� ��^���	�����
��	��� %
��
�
�� ��� 
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Consider: 

~�U� # �	
~�U� # �	 
�
 ����	�� ��^H��	���H�
�H	��+ %
�+

�
�� ��+� ��^���	�����
��	��� %
��

�
�� ��� 

� ����	�� � ��^H��	���H�
�H	��+ %
�+
�
��

�
��

��^���	�����
��	��� %
�� ��+��� 

� ����	�ª ��^H	���H�
�H	��^�	�����
��	 ����	���H�
�H	��+ %
�+ ����	�����
��	��� %
�� ��+����
��  

� ����	�ª �\��H�
�H
N����
��_

S 


����	���H�
�H	��+ %
�+ ����	�����
��	��� %
�� ��+����
��  

� ����	�ª �-a
S 


����	���H�
�H	��+ %
�+ ����	�����
��	��� %
�� ��+���
�
��  

where 

«¬ �
 \
��+ %
�+ ��� %
��_ 
Therefore the Q function can be written as 

�
��N �	
� ����	�� � +T�LV�WXYZ[\]^_X��H�`a\]`_GHS

�
�� 
�-a
S 

ª ����	���H�
�H	��+ %
�+ ����	�����
��	��� %
��

�
�� 
��+����U�

��  

� ����	�ª ª +T�LV�WXYZ[\]^_X��H�`a\]`_GHS�-aS 
�
���	���H�
�H	��+ %
�+ ����	�����
��	��� %
�� ��+����U�

��
�
��  

 

Rearranging into squared form 

�
��N �	
� ����	�ª ª +T�LV�WXYZ[\]^_X��H�T`G�`:Va\]`_GH�S�]`-	�H�-a\]`_- 
�

���	���H�
�H	��+ %
�+ ����	�����
��	��� %
�� ��+����U�
��

�
��  

Now we try to form a Gaussian PDF inside the integral 

�
��N �	
� ����	�ª +T�LV�WXYZ[\]^_X��H�T`G�`:Va\]`_GH�S�]`-	
�U
ª �H�-a\]`_- 
����	���H�
�H	��+ %
�+ ����	�����
��	��� %
�� ��+����

��
�
��  

so the outer integral would sum out to unity 
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�
��N �	 � ����	�ª �H�-a\]`_- 

����	���H�
�H	��+ %
�+ ����	�����
��	��� %
�� ��+����
��  

Expanding the constant matrix, we will have 

 �H�-a\]`_- � � 
���H�
�H	�
�

�p���H�
�H	�����
��	�����
��	��  

       And therefore  

�
��N �	
� ����	�ª ����+ %
�+	���� %
��	 � 
���H�
�H	�
�

����H�
�H	�����
��	�����
��	���

�� ����	���H�
�H	����	�����
��	��+��� 

� ����	�� ����� %
��	 ����	�����
��	������
��	� �� ����	���H�
�H	���+ %
�+	 ����H�
�H	�
�

����H�
�H	�����
��	��
��

�
�� ��+��� 

� ����	�� ����� %
��	 ����	�����
��	������
��	� �� ����+ %
�+	 ����H�
�H	�� �
\�����
��	��_���H�
�H	�
��

�
�� ��+��� 

� ����	�� ����� %
��	 ����	�����
��	������
��	� � 

�
��

®
� ����+ %
�+	 ����H�
�H	�� �
\�����
��	��_���H�
�H	�\�����
��	��_�� �\�����
��	��_���
�� ��+��� 

� ����	�� ����� %
��	 ����	�����
��	������
��	� �� ����+ %
�+	 �¯
���H�
�H	� ������
��	��� °���\�����
��	��_���

��
�
�� ��+��� 

� ����	�� ����� %
��	 ����	�����
��	������
��	� �� ����+ %
�+	 �¯
���H�
�H	� ������
��	��� °���\�����
��	��_���

��
�
�� ��+��� 

� ����	�� ����� %
��	 ����	�����
��	������
��	� ���\�����
��	��_�� � ����+ %
�+	 �¯
���H�
�H	� ������
��	��� °��

��
�
�� ��+��� 

� ����	�� ����� %
��	 ����	�����
��	������
��	� ���\�����
��	��_�� � ����+ %
�+	 �¯
���H�
�H	� ������
��	��� °��

��
�
�� ��+��� 

 

 

Trying to solve the integral: 

���N �	
� � �T��� %
��V ��#�	T���%
��V�

T���%
��V� ��#¢mT���%
��V#�£�� � �T��� %
��V �±
����%
��	� %mT���%
��V#�� ²�³

#³
³
#³ ������ 
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Upon completing the squares of the outer integral, we will have 

� � �T��� %
��V ��#�	T���%
��V%
T���%
��V� �#TmT���%
��V#�V�� � �T��� %
��V �±

����%
��	� %mT���%
��V#�� ²�³
#³

³
#³ ������ 

� �#
�m�#�	����#m�	
#
��� � �T��� %
��V �
�#m�� ±T���%
��V%
´m�#��#m�µ²�� �T��� %
��V �±

����%
��	� %mT���%
��V#�� ²�³
#³

³
#³ ������ 

Let �+ �
#�+��� M+N ���&
��+ �
�+�� % ����M+	�M+ and �� �
#�����M�N ��� � ���� %����M�	�M� 

� �#
�m�#�	��T�#m�V
–
��� � ����� # 
����M�	�
�#m�� ±����#
����M�	%
´m�#��#m�µ²� 

� ����� # 
����M�	�±

����#
����M�	� %m����#
����M�	#�� ²�³
#³

³
#³®
���� % ����M�	���� % ����M�	�M��M�

� �#
�m�#�	��T�#m�V
–
��� � ���
P

% ����M�	��#m�� ±����#
����M�	%
´m�#��#m�µ²�� �� % ����M�	�±����#
����M�	� %m����#
����M�	#�� ²��
P �M��M� 
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III. Conclusion 

In this paper, we have shown an alternative form of the Gaussian Q-function and a new formulation 
to achieve this. Our approach was based on removing the variables (x ¶ y) from the limits of the 
integrals by using the trick of unit step function than replacing the latter by its Fourier transform 
and hereby ending up with multi-dimensional integral that can be computed with the use of the 
multivariate Gaussian Joint PDFs and some change of variable. Since the limits of the integral are 
independent of the variables (x ¶ y), this will make it easier to average BER and compute PER and 
thus deal with performance evaluation of several modulation techniques over fading channels. We 
applied this on 1-Dimentional Q-function and we ended up with the same alternate form derived by 
Craig, then we extended it to the 2-Dimensional Q-function where we ended up with an integral 
shape whose limits are independent of (x ¶ y). Then we moved to a special case of the 2-
Dimentional Q- function ����	 which is used in evaluating the PER of QAM modulation techniques.  
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