KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY ELECTRICAL ENGINEERING DEPARTMENT

Fall 2012

EE 242 Digital Communications and Coding

Home Work #2 (due Oct. 8, 2012)

Q1. Prove that vectors
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$ form a basis in \mathbb{R}^3 .

Q2. Let s_1, \ldots, s_N be a basis in a vector space \mathcal{V} and let v be a vector in \mathcal{V} . Prove that the representation of v using the basis is unique, i.e. if

$$v = c_1 s_1 + c_2 s_2 + \dots + c_N s_N$$
 and $v = c'_1 s_1 + c'_2 s_2 + \dots + c'_N s_N$

then
$$c_1 = c'_1, c_2 = c'_2, \cdots, c_N = c'_N$$
.

Q3. Consider the three signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ shown in Fig. 1.

a. Find the norm of $s_1(t)$ and $s_2(t)$, the inner product of the two signals, and the angle between the two signals.

b. Prove that $s_1(t)$, $s_2(t)$ and $s_3(t)$ are independent.

c. Find a signal $s_4(t)$ that is orthogonal to both $s_1(t)$ and $s_2(t)$.

Figure 1: Signals $s_1(t), s_2(t)$ and $s_3(t)$

1

Q4. Consider the following modulated waveforms.

$$x_{0}(t) = \begin{cases} \sqrt{2}(\cos{(2\pi t)} + \sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{1}(t) = \begin{cases} \sqrt{2}(\cos{(2\pi t)} + 3\sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{2}(t) = \begin{cases} \sqrt{2}(3\cos{(2\pi t)} + \sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{3}(t) = \begin{cases} \sqrt{2}(3\cos{(2\pi t)} + 3\sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{4}(t) = \begin{cases} \sqrt{2}(\cos{(2\pi t)} - \sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{5}(t) = \begin{cases} \sqrt{2}(\cos{(2\pi t)} - 3\sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{6}(t) = \begin{cases} \sqrt{2}(3\cos{(2\pi t)} - \sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{7}(t) = \begin{cases} \sqrt{2}(3\cos{(2\pi t)} - 3\sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{7}(t) = \begin{cases} \sqrt{2}(3\cos{(2\pi t)} - 3\sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{7}(t) = \begin{cases} \sqrt{2}(3\cos{(2\pi t)} - 3\sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$x_{7}(t) = \begin{cases} \sqrt{2}(3\cos{(2\pi t)} - 3\sin{(2\pi t)}) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

The signals have the following probabilities

$$p(x_0) = p(x_4) = p(x_8) = p(x_{12}) = \frac{1}{8}$$
 and $p(x_i) = \frac{1}{24}$ $i = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15$

- **a.** Find a basis for this set of signals and find the vector representation of the signals using this basis.
- **b.** Plot the signal constellation.
- c. Compute the average energy of the constellation and the minimum distance.

Q5. Consider the channel shown in Fig. 2, where $s_1 = 1$ and $s_2 = -0.5$. $p(r|s_1)$ and $p(r|s_2)$ are

Figure 2: Channel

as shown in Fig. 3.

Figure 3: $p(r|s_1)$ and $p(r|s_2)$

a. Assume the two messages are equiprobable. Determine the received signal when

(i)
$$r = -2$$
, (ii) $r = -1$, (iii) $r = 3$, and (iv) $r = -7$

- **b.** Repeat **a.** if $p(s_1) = 0.75$ and $p(s_2) = 0.25$.
- ${f c.}$ Determine the decision regions and probabilities of error for part ${f b.}$