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Abstract

OFDM modulation combines the advantages of high achievable rates and relatively easy imple-

mentation. However, for proper recovery of the input, the OFDM receiver needs accurate channel

information. Most algorithms proposed in literature perform channel estimation in the time domain.

This increases the computational complexity especially for data aided algorithms and does not lend

itself to multiaccess situations where the user is only interested in part of the spectrum. In this

final project report, we propose a frequency domain algorithm for channel estimation and tracking

in OFDM. The algorithm is based on interpolating the spectrum and tracking the interpolation

parameters instead of tracking the actual response. In this project we propose two interpolation

techniques. The first is a polynomial interpolation method (e.g., using piece-wise linear or quadratic

interpolation) which proved to be quite inadequate for channel tracking in a wireless environment.

The second tracking method is based on eigen-decomposition of the channel correlation and proves

to be superior to former tracking technique and to channel estimation techniques. A data-aided

forward-backward Kalman filter is also implemented to to enhance the performance of the channel

estimation algorithm.



Chapter 1

Introduction to Channel Estimation

With the advent of the modern digital communication age, demands on the data transmission rates

have exceeded several Mbps and will continue to grow in the foreseeable future as the telecommuni-

cation industry continues to offer more sophisticated and advanced services. Orthogonal frequency

division multiplexing (OFDM) is a technology that promises to meet these transmission demands.

Since the last decade, OFDM has attracted considerable attention. The main reason for this inter-

est is the substantial advantage it offers in high rate transmissions over frequency selective fading

channels like robustness to multi-path fading and capability to control the data rate according to the

transmission channel [1]. OFDM effectively divides a wide band frequency selective fading channel

into a large number of narrow band flat fading channels over which parallel data streams are trans-

mitted thereby increasing the symbol duration. The insertion of a cyclic prefix (CP), of adequate

length, in the transmission symbol reduces the inter symbol interference (ISI). The CP, which is a

cyclic extension of the IFFT output, has to be at least as long as the cannel impulse response (CIR)

in order to avoid ISI. This also enables the OFDM system to have simple receiver structure utilizing

a frequency-domain equalizer (FEQ) with only one complex multiplication per subcarrier to mitigate

frequency selectivity. As such, OFDM has found wide acceptance and application. It is already a

part of many digital communication standards and is being used the world over. OFDM has been

selected as the physical layer of choice for broadband wireless communications systems ([1], [2], [3],

[4], [5]).
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The aim of this project is to explore techniques frequency-domain techniques for channel estima-

tion and equalization techniques in multiple access OFDM. To pave the way for this, we introduce

in this first chapter the OFDM system model in a time-variant environment and perform extensive

literature review of available techniques (blind, semi-blind, training-based, and data-aided) for chan-

nel estimation. We also survey techniques used for channel estimation in the time and frequency

domains. We then contrast the two method of time and frequency domain channel estimation and

argue that multiple access OFDM lends itself better to frequency domain channel estimation.

In Chapter 2 we introduce an interpolation method for channel estimation in the frequency do-

main and use least-squares to perform channel estimation. Our simulations show that this technique

is not suitable for recovering the channel in highly time-variant environments. In Chapter 3, we

introduce a new method based on retaining the dominant eigenvectors of the channel covariance

matrix. We also use a data-aided forward-backward Kalman filter to track the dominant eigenvalues

of the channel. This techniques shows favorable behavior as compared with channel estimation

1.1 System Model

Consider a sequence of T + 1 data symbols X 0, X 1, · · · ,X T , each of length N , to be transmitted

in an OFDM system. Every symbol X i, undergoes an IFFT operation to produce the time domain

symbol

xi =
√

NQ∗X i (1.1)

where Q is the N×N FFT matrix. In order to counter the effect of ISI, a length P CP xi is appended

to the symbol xi, which results in the super symbol xi, each of length N + P . The CP serves to

mitigate the multi-path effect but the estimation of channel characteristics of fading channels require

densely spaced pilot tones specially for those channels with a small coherence bandwidth [31]. Figure

1.1 shows the basic elements of an OFDM transmitter.

Let hi be the channel of maximum length P + 1. We consider a block fading model and assume

that the channel remains unchanged for each super-symbol but varies from one super-symbol to the
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Figure 1.1: OFDM Transmitter Block Diagram.

next according to the following state space model.

hi+1 = Fhi + Gui
(1.2)

where ho ∼ N (0, Πo) and uo ∼ N (0, σ2
u). the matrices F and G are a function of the doppler spread,

the power delay profile (frequency correlation), and the transmit filter. The matrices are given as

F =




α(0)

. . .

α(P )




and G =




√
1− α2(0)

. . .
√

(1− α2(P ))e−βP




α(p) is related to the Doppler frequency fD(p) by α(p) = J0(2πfDT (p)). The variable β corre-

sponds to the exponent of the channel decay profile while the factor
√

(1− α2(p))e−βp ensures that

each link maintains the exponential decay profile (e−βp) for all time. We assume this information in

known at the receiver. The model thus captures both frequency and time correlation.

The passage of xk symbols through the channel h, produces the received sequence yk at the

receiver. The received packet (of length N + P ) is split into a length N packet yk and a length

P prefix y
k
. The prefix absorbs all the ISI present between the xk−1 and xk packets and is hence

discarded. The time domain relation of the input and the output can be expressed as

yi = xi ⊗ hi + ni (1.3)

Equation (1.3) takes a more transparent form in the frequency domian as

Y i = diag(X i)Hi + N i (1.4)

or

Y i = diag(X i)QP+1hi + N i (1.5)
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The relationship in (1.5) follows from the FFT relationship

Hi = Q




hi

0


 = QP+1hi (1.6)

where QP+1 consists of the first P + 1 columns of Q. Alternatively, with

Xi
∆= diag(X i)QP+1

(1.7)

we can write

Y i = Xihi + N i (1.8)

which is no longer diagonal. We will discuss the disadvantage of this decoupled relationship in this

part.

1.2 Literature Review

As mentioned in the introduction, our aim is to design an algorithm for channel estimation in

OFDM. In this section, we will take a look at the literature relating to channel estimation in OFDM

systems. We will provide an overview of the various approaches to channel estimation and the

different constraints assumed on channel and data.

The availability of an accurate channel transfer function estimate is one of the prerequisites for

coherent symbol detection in an OFDM receiver. Numerous research contributions have appeared

in literature on the topic of channel estimation, in recent years. One way to classify these works is

as according to the method used for channel estimation (training based, semi blind, blind and data

aided). Another approach to classify these algorithms is based on the constraints used for channel

and data recovery.

1.2.1 Channel Estimation using Pilots

One technique for channel estimation is to use pilots. As equalization requires channel state informa-

tion (CSI), pilots on predetermined subcarriers are sent as training signals in OFDM systems, and
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the channels for pilot subcarriers are directly estimated, while those for non pilot subcarriers need

to be estimated through interpolation with the channel estimates from adjacent pilot subcarriers [6],

[7], [8], [9], [10], [11]. This in turn, is achieved at the cost of a reduction in the number of useful

subcarriers available for data transmission. In [12], the authors have developed a channel estimator

by introducing an extended channel and its finite impulse response approximation.

1.2.2 Blind Channel Estimation

Since the number of pilots must be greater than the number of channel taps, the use of cyclic pre-

fix (CP) and pilot symbols entails a significant bandwidth loss, motivating blind methods. Several

works have attempted to perform blind channel estimation in OFDM. The authors in [13] explored

transmitter redundancy for blind channel estimation while in [14], a blind identification exploiting

receiver diversity which can get CSI during one OFDM symbol was investigated. In [16] the au-

thors present a fast converging blind channel estimator for OFDM-systems based on the Maximum

Likelihood principle. A non redundant precoding along with cyclic prefix was explored in [17]. In

[18], second-order cyclostationary statistics and antenna precoding are used while [19] employs finite-

alphabet constraint for blind channel estimation. The authors in [20] suggest an approach which

relies on the i.i.d. assumption of the data sequence and uses the cyclic prefix redundancy present in

OFDM systems and [22] developed a posteriori probability based two dimensional channel estimation

algorithm.

1.2.3 Semi Blind Channel Estimation

In semi blind methods, both the pilots and natural constraints are used for channel estimation([23],

[24]). In [25] a semi-blind channel estimation using receiver diversity is proposed for OFDM systems

in the presence of virtual carriers. The authors in [26] employed a semiblind channel estimation

method using selected channel parameter estimation and error reduction algorithms. The work

presented in [45] proposes a pilot aided algorithm for frequency domain channel estimation for a

single-user and multiple receiving antennas system in the presence of synchronous interference while
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the authors in [27] used delay sub-space based approach for channel estimation. In [28], coding along

with pilots was used for channel estimation. Similarly other papers have explored various other

semi-blind techniques for channel estimation. Coding and cyclic prefix was investigated for channel

estimation in [30]. Authors of [31] used interpolated LS by applying phase shifted samples while [32]

proposed to include a phase rotation term in the frequency domain interpolation.

1.2.4 Data Aided Channel Estimation

The motivation behind estimating the channel response is to recover the data being transmitted.

The detected data can be, in turn, used to improve the channel estimate, thus giving rise to an

iterative method for channel and data recovery. Several works have explored this idea of joint data

and channel recovery ([29], [47] , [48], [49], [51], [52], [38], [42], [53], [44], [57], [58]). A data aided

approach seems most appropriate for channel estimation as it makes a collective use of data and

channel constraints for estimation.

1.2.5 Constraints Used in Channel Estimation/Data Detection

All the works mentioned above, use a subset of the following constraints on the channel estimate or

data, regardless of the estimation technique used. Following is a survey of these constraints and the

work that employs them.

Data Constraints:

Finite alphabet constraint: Data is usually drawn from a finite alphabet set. The authors in

[19], [35] and [38] make use of this constraint.

Code:Data usually exhibits some form of redundancy like a code that helps reduce the row

probability or err [22], [30], [49].

Transmit precoding: The data might also contain some form of precoding (to facilitate equal-

ization at the receiver) such as a cyclic prefix, silent guard bands [46], [50] and known symbol

precoding [61].

6



Pilots: Pilots represent the most primitive form of redundancy and are usually inserted to

perform channel estimation or simply to initialize the estimation process [11], [7], [8], [28], [44], [12],

[27].

Channel Constraints:

Finite delay spread: The channel is usually of finite impulse response with a maximum delay

spread that is assumed available to the receiver.

Sparsity: the sparsity of a multipath fading channel is defined as the ratio of the time duration

spanned by the multipaths to their number [15], [34], [39]. the number of paths and their delays are

usually stationary. However, their amplitudes and relative phases usually very much more rapidly

with time. this essentially reduces the number of parameters to be estimated to that of the number

of multipaths in the channel.

Frequency correlation: In addition to information about which of the channel taps are inactive,

we usually have additional statistical information about the active ones. Thus, it is usually assumed

that the taps are Gaussian ( zero mean or not depending on whether the channel exhibits Rayleigh or

Rician fading) with a certain covariance matrix. this matrix is a measure of the frequency correlation

among the taps [37], [54].

Time correlation: As channels vary with time, they exhibit some form of time correlation.

time-variant behavior could also be more structured, e.g., following a state-space model [47], [48],

[56].

Uncertainty information: Channel also suffers from non ideal effects such as nonlinearities

and rapid time-variations that are difficult to model. The aggregate effect of this non ideal behavior

could be represented as uncertainty information that can be used to build robust receivers [21].

Regardless of the approach used for channel estimation or the constraints employed, estimation

can be carried out in any of the two domains (time and frequency). Below, we classify the approaches

that are used in either of these two domians. We also discuss the advantages and disadvantages of

estimation in these domains. All these methods for channel estimation are either in the frequency

domain or in the time domain. Below is a survey of various works in the two domains.
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1.2.6 Time Domain Channel Estimation

A lot of researchers have opted for channel estimation in the time domain. A joint carrier frequency

synchronization and channel estimation scheme using the expectation-maximization (EM) approach

is proposed in [40]. A time domain minimum mean square error (MMSE) channel estimation tech-

nique based on subspace tracking for OFDM system is put forward in [41]. In [42], a joint channel and

data estimation algorithm is presented which makes a collective use of data and channel constraints.

A simplified joint frequency-offsett and channel estimation technique for Multi-Symbol Encapsulated

MSE OFDM system is proposed in [23], while authors in [26] present a sequential method for channel

response estimation based on Carrier Frequency Offset and symbol timing estimation by exploiting

the structure of the packet preamble of IEEE 802.11a standard. The authors in [43] take a statistical

approach and estimate the channel based on Power Spectral Density (PSD) and LS estimation for

OFDM systems with timing offsets. An iterative receiver structure with joint detection and channel

estimation based on implicit pilots is proposed in [44] and [45] presents a pilot aided channel estima-

tion algorithm in the presence of synchronous noise by exploiting the a priori available information

about the interference structure.

1.2.7 Frequency Domain Channel Estimation

In the past years, various techniques for channel estimation in the frequency domain have also been

explored. Researchers in [31] apply phase shifted samples in the frequency-domain to an interpolated

LS to estimate the channel while in [32], the authors propose to include a phase rotation term

in the frequency domain interpolation for better CIR window location. Channel estimation using

polynomial cancelation coding (PCC) training symbols and frequency domain windowing is proposed

in [33]. A sub-band approach to channel estimation and channel equalization is proposed in [36].

A low-complexity iterative channel estimator is proposed in [29]. The minimum mean square error

(MMSE) channel estimation in the frequency domain is considered in [37] while researchers in [27]

present delay subspace-based channel estimation techniques for OFDM systems over fast-fading

channels.
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1.3 Disadvantage of Performing Channel Estimation in Time Do-

main

Most channel estimation algorithms for OFDM presented in literature perform estimation in the

time domain (instead of the frequency domain) [12], [40], [42], [23], [26]. By performing estimation

in the time domain, one can decrease the degrees of freedom from N , the number of frequency bins,

to P +1, the number of (time domain) channel taps. This is a drastic reduction since the number of

channel taps is usually less than the cyclic prefix which is usually designed to be less than N
4 . The

reduction in the parameter estimation space in turn results in improved estimation accuracy.

There is a certain price that we have to pay, however, for this gain. We loose the diagonal struc-

ture of the channel by performing the estimation in the time domain. Thus, instead of frequency

domain relationship (1.4) in which the various equations are decoupled, we employ the time-frequency

relationship (1.8) which is no more diagonal (decoupled). This loss in transparency in return com-

plicates channel estimation and makes it more computationally complex. For example, while the

estimation in (1.4) is performed on a bin by bin basis according to

Ĥ(l) =
Y(l)
X (l)

l = 1, 2, · · · , N (1.9)

channel estimation in (1.8) requires size P +1 matrix inversion

ĥ = (X∗X)−1X∗Y (1.10)

Moreover, since data detection is best performed in the frequency domain, estimating the channel

in the time domain makes it necessary to perform an extra IFFT operation (to obtain the frequency

domain estimate H from the time domain estimate ĥ and use it for data detection). Thus, for data-

aided channel estimation techniques, each channel estimation step would require one such IFFT

operation.

Apart from the computational complexity, performing channel estimation in the time domain

might be over solving a problem. For example, in multiple access OFDM systems, like WiMAX,

users are not interested in the whole frequency spectrum, but only in that part of the spectrum in
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which they are operating. In fact these users don’t have access to the whole spectrum but only a

part of it is available to them. Moreover, even if some users were interested in estimating the whole

spectrum, many standards would not be able to support that as there are not enough pilots to do

so.

1.4 Can we perform channel estimation reliably in the frequency

domain?

Channel estimation in the frequency domain avoids the above disadvantages. Moreover, the structure

that characterizes the estimation problem in the time domain continues to characterize the estimation

problem in the frequency domain. Specifically, the time and frequency correlation exhibited by the

time domain channel maps in to corresponding correlation of the channel frequency response.

The only problem with channel estimation in the frequency domain is the increase in the number

of parameter to be estimated [37]. If we can reduce the parameter estimation space, then we can

avoid the one disadvantage of frequency domain estimation as compared to time domain estimation.

The frequency response of the channel is inherently limited by the degrees of freedom of the time

domain impulse response. How does this limited degree of freedom manifests itself in the frequency

domain? Figure 1.2 demonstrates the length 64 frequency response resulting from a 16 tap channel

with exponential decay profile similar to the one we employ in our simulations. Note that within a

narrow enough band of spectrum, the spectrum looks linear or quadratic. As such, we employ model

reduction in this paper to estimate the spectrum, thereby reducing the number of parameters to be

estimated.

1.5 Input/Output Relationship in the Frequency Domain

The input/output relationship of the OFDM system is best described in the frequency domain. A

frequency domain channel response of length N is shown in figure 1.2. We start by partitioning the
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Figure 1.2: Channel Impulse Response in the Frequency Domain partitioned in four subchannels.

channel response into a number of sections each of length Lf producing a total of d N
Lf
e sections1.

Let us denote the jth section of the frequency response by H(j). The input/output equation for this

section is given by

Y(j)
i = diag(X (j)

i )H(j)
i + N (j)

i
(1.11)

Where Y(j), X (j), H(j) and N (j) are the jth sections of Y , X , H and N respectively. From now

onwards, we will drop the dependence on j for notational convenience. Equation (1.11) can now be

written as

Y i = diag(X i)Hi + N i
(1.12)

Where N i ∼ N (0, σ2
i I) is the additive white gaussian noise.

1.6 Pilot/Output Relationship in Frequency Domain

In general, the receiver needs pilots to obtain a channel estimate. The pilot locations within the

OFDM symbol are denoted by the index set Ip = i1, i2, · · · , iLp . Also, let diag(X Ip) denote the
1In a multi-access OFDM system, we can choose the section length to be the number of carriers allocated to each

user. However, the sections need not have equal length over the frequency response.
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matrix diag(X ) pruned of the rows that do not belong to Ip. Then, the pilot/output equation can

be derived from the input/output relation (1.12) as

YIp
= diag(X Ip)H + N Ip

(1.13)

1.7 A Parameter Reduction Approach

The main hindrance in performing channel estimation in the frequency domain, as opposed to the

time domain estimation, is the increased number of parameters to be estimated. Our goal here is to

apply some parameter reduction technique to reduce the number of frequency domain parameters

to be estimated. Dropping the dependence on time index i for notational convenience, we consider

that H can be expressed as

H = V pαd (1.14)

where V p is a known matrix and αd is the vector of parameters to be determined. We will consider

two different approaches for estimating H. One approach is to consider a linear or quadratic ap-

proximation which we will discuss in chapter 2. Another way to go about solving for H is based on

Eigenvalue decomposition and is discussed in chapter 3.
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Chapter 2

Interpolation Based Frequency

Domain Estimation

The problem that we encounter when performing channel estimation in frequency domain is the

increased number of parameters to be estimated. For frequency domain estimation, we require to

estimate N parameters while in the case of time domain estimate, we only need to estimate P + 1

parameters. We can eliminate this disadvantage if we can find a way to decrease the parameter

estimation space for the frequency domain estimation, such that it is comparable to the number of

parameters needed for time domain estimation. The frequency response of the channel is inherently

limited by the degrees of freedom of the time domain impulse response. Figure 2.1 shows a length

64 frequency response of a 16 tap channel with an exponential delay profile similar to the one that

will be use in simulations. We can see that with in a narrow enough band width, the spectrum can

be approximated as linear or quadratic. Mathematically speaking, let H(k) be a sub band of the

frequency spectrum of width Lf (where k = 1, 2, · · · , b N
Lf c). If the frequency spectrum is linear in
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this sub band, then we can write

H(k) =




1 1

1 2
...

...

1 Lf







α

β


 (2.1)

If the spectrum is quadratic, we can write:

H(k) =




1 1 1

1 2 22

...
...

...

1 Lf L2
f







α

β

γ




(2.2)

In general, we can write

H(k) = V pαd (2.3)

where V p is the interpolation matrix and αd is the vector of interpolation parameters.

The input/output relation is given by equation(1.12). Replacing H from equation (2.3) results

in

Y = diag(X )V pαd + N

= Ωαd + N
(2.4)

where Ω = diag(X )V p and N is zero mean white gaussian noise. Pruning the above equation yields

YIp
= ΩIp

αd + N Ip
(2.5)

2.1 Least Squares

The solution of equation (2.5) is based on minimizing

α̂d = arg minαd
{||YIp

−ΩIpαd||2} (2.6)

Solving it as a least square problem [59], yields

α̂d = (Ω∗
Ip

ΩIp)
−1Ω∗

Ip
YIp

(2.7)

14



0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

N

|H
(n

)|

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Figure 2.1: Channel Impulse Response in the Frequency Domain divided into 4, 8 and 16 parts.
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Figure 2.2: BER curve for 8 sections 2 parameters

The estimate of the jth section of the channel is thus given by

H = V pα̂d (2.8)

Concatenation of all M such section will give us the complete channel response H.

2.2 Simulation Parameters

Consider an OFDM system where an iid sequence of T + 1 data symbols X T
o are to be transmitted.

The length of each symbol N , is 64. We use a CP of length 15. The modulation scheme used is 16

QAM with grey coding. The channel impulse response(CIR) is considered to consist of 16 complex

taps(maximum length allowable for the channel with a CP length of 15). The exponential decay

profile E[|h0(k)|2] of the channel remains fixed over any OFDM symbol and is taken to be e−0.2k.

These parameters are used throughout the simulations.

2.3 Effect of number of pilots

By intuition, we know that increasing the number of pilots should yield a better channel estimate

and hence better BER performance. Figure 2.2 is plotted for 16 and 32 pilots. In both cases, we

use 2 interpolation parameters and 8 sections. As evident from the figure, increasing the number of

pilots will lead to a better channel estimate.
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Figure 2.3: (a) BER curve for 32 pilots and 2 parameters (b) BER curve for 32 pilots and 3 parameters.

2.4 Effect of section length

Another way to improve the channel estimate is would be to divide the channel into a larger number

of sections. We employ 32 pilots, 2 interpolation parameters and divide the channel into 4, 8 and

16 sections respectively. The BER curves for these three cases are shown in figure 2.3(a). We can

see that decreasing the section length, i.e. increasing the number of section per channel, results in a

better BER performance. Figure 2.3(b) shows BER performance for 32 pilots and 3 parameters and

shows the same trend. So for a better channel estimate, we should use a larger number of sections.

2.5 Effect of varying the number of parameters

The channel estimate is also affected by varying the number of estimation parameters. We plot the

BER of the system using 2 and 3 interpolation parameters. In both cases, we use 32 pilots and

dived the channel into 8 sections. Figure 2.4 shows the effect of changing the number of parameter

on the BER performance. As we can see, increasing the number of parameters from 2 to 3, results

in improved BER performance specially at high SNR. So increasing the number of interpolation

parameters improves the channel estimate. For figures 2.2-2.4 above, we conclude that

• Increasing the number of pilots improves the channel estimate.
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Figure 2.4: BER curve using 32 pilots and 8 sections

• Increasing the number of sections in which the frequency domain channel response is divided,

improves the channel estimate.

• Increasing the number of interpolation parameters improves the channel estimate.

However, there is a limit to the extent we can increase these parameters. Increasing the number of

pilots means fewer carriers are available for data transmission purpose. The number of sections and

the number of interpolation parameters are in turn both limited by the number of pilots we use. For

the Least Square solution of equation (2.5), requires the following condition to be fulfilled

number of pilots in each section ≥ number of interpolation parameters (2.9)

So if use 32 pilots and 2 interpolation parameters, then every section of the channel response must

have at least 2 pilots. That means that at most we can divide the channel response into 16 sections.

If we increase the number of interpolation parameters to 3, than each section must have at least 3

pilots. In this case channel response can be divided into a maximum of 8 sections.

This limitation can be avoided if we use a regularized Least Square solution for equation (2.5).

In that case we can have as many sections and interpolation parameters as we want as long as there

18
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Figure 2.5: (a) CIR inflated at the edges(32/2/16) (b) Removing inflation using averaging scheme.

is at least one pilot per section. i.e.

number of pilots in each section ≥ 1 (2.10)

2.6 Schemes to improve the channel estimate

The interpolation method we use in this chapter is polynomial based. As such, we expect the point at

the edge of each section to be inflated as shown in figure 2.5(a). The first figure is for 2 interpolation

parameters and the second is for 3 parameters. both have 32 pilots and 16 sections. If we can

somehow correct these inflated points, our estimate is bound to improve. In order to reduce this

error, we use an Averaging Scheme. This scheme sets the estimate of the edge point of each

section to be the average of the second last point of the current section and the first point of the

next section.

Figures 2.5(a) and 2.5(b) show the original LS based channel estimate( 32 pilots/2 parameters/16

sections) with inflated points and compares it with the averaging scheme. We can see that using

the averaging scheme improves the channel estimate. Let uss compare the performance of the two

methods to get a better idea of the advantage offered by the averaging scheme. We consider the case

of 32 pilots. Figures 2.6(a) and 2.6(b) show the Error and BER plots for the two schemes using 3

interpolation parameters, 8 sections per channel and figures 2.6(c) and 2.6(d) show the same plots

19



for 2 interpolation parameters, 16 sections per channel. It is evident that the averaging scheme

outperforms the LS solution. Also an interesting observation is that the averaging scheme performs

better in the case of 16 sections. This is logical as the later case has more number of sections and

more edge points will be corrected by the averaging scheme than in the former case.
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Figure 2.6: (a) Error plot for LS and Averaging Scheme for (32/3/8) (b) BER plots for LS and Averaged

Scheme for (32/3/8) (c) Error plot for LS and Averaging Scheme for (32/2/16) (d) BER plots for LS and

Averaged Scheme for (32/2/16).
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2.7 Least Squares with regularization

Ideally, we estimate αd using some I/O relationship by maximizing the corresponding log-likelihood

function

α̂d = arg max
αd

{ln p(Y |Ω,αd) + ln p(αd)}

When the channel obeys the I/O relationship (2.4) (so that ln p(Y |Ω, αd) = −‖Y −Ωαd‖2
σ−2 up to

some additive constant ln p(αd) = −‖αd‖2
R−1

αd

up to some additive constant), then the LS estimate

is given by

α̂d = arg maxαd

{
||YIp

−ΩIp
αd||2σ−2

n I
+ ||αd||2R−1

αd

}
(2.11)

where σ2
n is the noise variance. The estimate of αd that minimizes the MSE is given by

α̂d = RαdΩ
∗
Ip

[σ−2
n I + ΩIp

RαdΩ
∗
Ip

]−1YIp
(2.12)

We will assume that Rαd
is the identity matrix, that is we assume no correlation between parameters.

The advantage of regularized LS solution is that there is no restriction on the number of pilots per

section and they can be less than the number of parameters. This allows us to try those combinations

of interpolation parameters, number of pilots and number of sections which are not possible in the

non-regularized case. Following are the BER curves for the regularized case with and without

averaging. Figure 2.7(a) and 2.7(b) are both plotted for 32 pilots and 16 sections. The number of

interpolation parameters used is 2 and 3 respectively.

2.8 Conclusion

The interpolation techniques based on simple linearization and quadratic approximation investigated

in this chapter require very dense pilot placement and this increased number of frequency domain

parameters to be estimated. The inherent limit on the number of interpolation parameters per

section can be removed by considering a regularized LS solution for the estimation problem. Still,

we find that this method requires a high number of estimation parameter for channel estimation.

As such, this method proves to be too expansive. Hence the need to explore some other method
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Figure 2.7: (a) BER curve for regularized solution with 32 pilots/2 parameters/16 sections (b) BER curve

for regularized solution with 32 pilots/3 parameters/16 sections.

to represent the channel in frequency domain. In the next chapter, we will consider an alternate

method for this purpose.
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Chapter 3

Eigenvalue Approach to Frequency

Domain Channel Estimation

Another approach for reducing the parameters in frequency domain channel estimation is the eigen-

value approach. Assuming that the second order statistics of the channel is available at the receiver,

we can find its Eigenvalue decomposition. Using model reduction, we can represent H using dominant

eigenvalue and treat the rest as modeling noise.

The input/output equation that involves the jth section is given by equation (1.12) while equation

(1.13) gives its pruned form. We reproduce them here for easy reference

Y(j)
i = diag(X (j)

i )H(j)
i + N (j)

i (3.1)

Dropping the dependence on j and i for notational convenience and pruning

YIp
= diag(X Ip

)H + N Ip
(3.2)

Obviously, the pilots are not enough to estimate the elements of H. So we resort to model reduc-

tion starting from the autocorrelation function of H, RH. To this end, consider the eigenvalue

decomposition of RH,

RH =
Lf∑

l=1

λlvlvT
l
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where λ1 ≥ λ2 . . . ≥ λLf
are the (ordered) eigenvalues of RH and v1, . . . ,vLf

are the corresponding

eigenvectors. We can use this decomposition to represent H as

H =
Lf∑

l=1

αlvl

where α = [α1, α2, . . . , αLf
]T is a parameter vector, to be estimated, with zero mean and autocor-

relation matrix Λ = diag(λ1, λ2, . . . , λLf
). We now represent H using the dominant eigenvalues and

treat the rest as modeling noise 1, i.e.

H = V dαd + V nαn (3.3)

Upon substituting (3.3) in (3.1), we obtain

Y = diag(X )V dαd + N + diag(X )V nαn (3.4)

= Xdαd + N ′
(3.5)

where Xd = diag(X )V d and N ′
= N + Xnαn with Xn = diag(X )V n. The noise N ′ includes

both the additive and modeling noise. We consider it to be zero mean white gaussian noise with

autocorrelation

RN ′ = RN + diag(X )V ndiag(λn)V ∗
ndiag(X )∗ (3.6)

Now equation (3.5) can be used to construct a pilot/output equation, similar to (3.2), as

YIp
= Xd,Ip

αd + N ′
Ip

(3.7)

Which can be used to estimate αd by maximizing the log likelihood function

α̂MAP
d = arg max

αd

{
ln p(YIp

|Xd,Ip
,αd) + ln p(αd)

}
(3.8)

The MAP estimate of parameter α is thus given by

α̂MAP
d = arg min

αd

{
‖YIp

−Xd,Ip
αd‖2

R−1

N′
+ ‖αd‖2

Λ−1
d

}
(3.9)

1The cutoff between the parameters that are considered dominant and the ones that are considered as part of the

modeling noise depends on the relative values of the λ
′
js. In our simulations, we use the condition

λj+1
λj

> 5 to place

our cutoff.
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which simplifies to

α̂d = ΛdX
∗
d,Ip

[
RN ′ + Xd,Ip

ΛdX
∗
d,Ip

]−1
YIp

(3.10)

The resulting mean square error is given by

Re =
[
Λ−1

d + X∗
Ip

R−1

N ′XIp

]−1
(3.11)

The estimate of the jth section of the spectrum is then given by Ĥ = V dα̂d. The concatenation of

all d N
Lf
e sections produces the frequency domain based estimate of the frequency response Ĥ.

3.1 Iterative Channel Estimation using the Expectation Maximiza-

tion Approach

Pilot based channel estimation, whether in the time domain or frequency domain, does not make

full use of the constraints on the data. One can thus implement iterative (data-aided) techniques for

channel estimation [38], [42]. Using the data aided approach, we can improve the channel estimate

[29], [42]. Thus providing the motivation to use the expectation-maximization (EM) algorithm.

The EM algorithm is used to estimate a parameter in the case when some of the date required for

estimation is unobserved. The algorithm first performs an initial estimate of the unobserved data

and uses this estimate to compute the maximum-likelihood (ML) estimate of the parameter to be

estimated. This is the maximization step. Next, the algorithm uses the estimated parameter to

update the estimate of the unobserved data. this is the expectation step. These steps are repeated

iteratively until a convergent solution is reached [60]. Next, we will discuss the EM algorithm in

detail.

3.1.1 The Maximization Step

In the previous subsection we find α̂d by maximizing the log likelihood function given by equation

(3.8). Since the input X (and hence Xd) is not observable, we can employ the EM algorithm

and instead of maximizing (3.8) we can maximize an averaged from of the log likelihood function.
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Specifically, starting from an initial estimate α̂
(0)
d , calculated say using pilots, the estimate α̂d is

calculated iteratively with the estimate at the kth iteration given by

α̂
(k)
d = arg max

αd

{
EXi|Yi,α̂d

(k−1) ln p(YIp
|Xd,Ip

, αd) + ln p(αd)
}

(3.12)

which simplifies to 2

α̂MAP
d = arg min

αd

{
E‖[YIp

−Xd,Ip
αd‖2

R−1

N′
+ ‖αd‖2

Λ−1
d

}
(3.13)

Strictly speaking, the noise correlation RN ′ is itself dependent on the input due to the modeling

noise (see equation (3.6)). Hence in performing the expectation in (3.13), we need to take this into

account. Treating the general case is difficult, so we consider the following three cases for R−1
N ′ :

Case 1: RN ′ is a constant:

This happens when we ignore the modeling noise so that

RN ′ = σ2I

where the expectation in (3.13) is taken with respect to Xd given Y and the most recent estimate

αd. In this case RN ′ becomes independent of Xd and it would then be straight forward to carry the

expectation in (3.13). Specifically, upon completing the squares, (3.13) can be equivalently written

as

min
αd

Y∗
i R

−1

N ′Y i −α∗dE[X∗
d]R

−1

N ′Y i −Y∗
i R

−1

N ′E[Xd]αd

+α∗dE[X∗
d]R

−1

N ′E[Xd]αd −α∗dE[X∗
d]R

−1

N ′E[Xd]αd

+α∗dE[X∗
dR

−1

N ′Xd]αd + α∗dΛ
−1
d αd

which can be simplified to

α̂MAP
d = arg min

αd

‖Y − E[Xd]αd‖2
1

σ2
n

I
+ ‖αd‖2

1

σ2
n

Cov[X∗
d]

+ ‖αd‖2
Λ−1

d

(3.14)

Case 2: Taking Expectation of RN ′ :

Instead of ignoring the modeling noise, we can split the expectation in (3.13) into an expectation
2the expectation is taken with respect to the input given the output and the most recent estimate α̂k−1

d . This

information is understood & dropped for notational convenience.
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over RN ′ and an independent expectation taken over the rest of the terms i.e., we can approximate

(3.13) as

α̂MAP
d = arg min

αd

{
E‖[YIp

−Xd,Ip
αd‖2

E[RN′ ]
−1 + ‖αd‖2

Λ−1
d

}
(3.15)

Now the expectation of RN ′ is given by

E[RN ′ ] = σ2I + E[diag(X )V nΛnV ∗
ndiag(X ∗)] (3.16)

We show in Appendix A that this expectation can be expressed as

E[RN ′ ] = σ2I + E[D]V nΛnV ∗
nE[D∗] + Cov[D]diag(V nΛnV ∗

n)

where D = diag(X ) and where diag(V nΛnV ∗
n) is a diagonal matrix whose diagonal coincides with

the diagonal of the matrix V nΛnV ∗
n. The now averaged RN ′ does not depend on X any more.

Replacing RN ′ by its expectation, it is then straight forward to carry the expectation in (3.15)

which comes out to be

α̂MAP
d = arg min

αd

‖Y −E[Xd]αd‖2
E[RN′ ]

−1 + ‖αd‖2
Cov[D]diag(V nΛnV ∗

n)
+ ‖αd‖2

Λ−1
d

(3.17)

Case 3: X is constant modulus:

In the constant modulus case, it is possible to evaluate (3.13) exactly. Specifically, and starting from

the expression for the autocorrelation RN ′

RN ′ = σ2I + DV nΛnV ∗
nD∗

we can write

R−1

N ′ = (σ2I + DV nΛnV ∗
nD∗)−1

= D−∗(
σ2

E I + V nΛnV ∗
n)−1D−1

= D−∗R−1

N ′′D
−1

where RN ′′
∆= σ2

E I + V nΛnV ∗
n and where we used the fact that DD∗ = EI since the input is

constant modulus. With this in mind, we conclude that

X∗
dR

−1

N ′ = V ∗
dD

∗R−1
N = V ∗

dR
−1

N ′′D
−1
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R−1

N ′Xd = D−1∗R−1

N ′′V d

and

X∗
dR

−1

N ′Xd = V ∗
dR

−1

N ′′V d

Thus, in the constant modulus case, (3.13) can be equivalently written as

α̂
(j)
d = arg min

αd

Y∗E[D−1∗]R−1
N ′′E[D−1]Y −Y∗E[D−1∗]R−1

N ′′V dαd

−α∗dV
∗
dR

−1

N ′′E[D−1]Y + α∗dV
∗
dR

−1

N ′′V dαd + α∗dΛ
−1
d αd

which upon simplification becomes

α̂MAP
d = arg min

αd

‖E[D−1]Y − V dαd‖2
R−1

N′′
+ ‖αd‖2

Λ−1
d

(3.18)

In the simulations further ahead, we compare the approximate solutions (3.14) & (3.17) with the

exact EM solution (3.18) for a constant modulus input. Simulations show that replacing R
′
N with

its expectation is almost as good as calculating the expectation exactly.

3.1.2 The Expectation Step

As we have seen above, the maximization step assumes the presence of some expectations. By

inspecting subsection 3.1.1, we see we need to calculate the following moments.

E[Xd], Cov[X∗
d], E[D], E[DBD∗], and E[D−1] (3.19)

Now as Xd = diag(X )V d = DV d we can see that we can express the moments of Xd in terms of

moments of D. Specifically we have that

E[Xd] = E[D]V d

and

Cov[X∗
d] = E[XdX

∗
d]− E[Xd]E[X∗

d]

= E[D]V dV
∗
dE[D∗] + Cov[D]diag(V dV

∗
d)− E[D]V dV

∗
dE[D∗]

= Cov[D]diag(V dV
∗
d)
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Moreover, we show in appendix A that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B) (3.20)

From above it follows that in order to calculate the expectations in (3.19), it is enough to calculate

the following three moments

E[diag(X )], Cov[diag(X )] & E[diag(X )−1] (3.21)

where the expectation is performed given the output Y and the most recent channel estimate Ĥ.

In carrying out these expectations, we will assume that the elements of X are independent.3. With

this in mind, it is easy to see that we can evaluate the moments in (3.21) and hence in (3.19) by

calculating

E[X (l)], Cov[X (l)] = E[|X (l)|2]− |E[X (l)]|2, E[
1

X (l)
]

Now assuming that X (l) is drawn from the alphabet A = {A1, . . . , AM} with equal probability, it is

can be shown that [42]

E[X (l)|Y(l),H(l)] =

∑M
j=1 Aje

− |Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(3.22)

E[|X (l)|2|Y(l),H(l)] =

∑M
j=1 |Aj |2e−

|Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(3.23)

E[
1

X (l)
|Y(l),H(l)] =

∑M
j=1

1
Aj

e−
|Y(l)−H(l)Aj |2

σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(3.24)

3.1.3 Summary of the EM Algorithm

Now let us summarize the EM based estimation algorithm developed so far.

1. Calculate the initial channel estimate Ĥ0 using pilots (3.9).
3This is in general not true because the elements of H are not independent (as the elements of H are the fourier

transform of the impulse response h). However, we continue to use this approximation as this maintains the trans-

parency of element-by-element equalization in OFDM.
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2. Calculate the moments of the input given the current channel estimate Ĥi and the output Y

using equations (3.22)-(3.24).

3. Calculate the channel estimate using either one of the methods (3.14), (3.17) or (3.18) outlined

in Section 3.1.

4. Iterate between step 2 and 3.

We can run the algorithm for a specific number of times or until some predefined minimum error

threshold is reached.

3.2 Using Time-Correlation to Improve the Channel Estimate

The receiver developed in the previous section performs channel estimation symbol by symbol. In

other words, the channel is block fading & hence is totaly independent from symbol to symbol. In

a practical scenario the channel impulse responses are correlated over time. In this section, we will

show how to use time correlation to enhance the estimate of αd. To this end, let’s first develop a

model for the time variation of the parameter αd.

3.2.1 Developing a Frequency Domain Time-Variant Model

Consider the block fading model in (1.2) and lets assume for simplicity that the diagonal matrices

F and G are actually scalar multiples of the identity, i.e.

F = fI G =
√

1− f2I

where f is a function of Doppler frequency (see [42]). We will use the time domain model in (1.2) to

derive a similar model for α. To this end, recall that

Hi = QP+1hi

Thus, the jth section of Hi, H(j)
i , is related to hi by

H(j)
i = Q

(j)
P+1hi (3.25)
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where Q
(j)
P+1 corresponds to the jth section of QP+1, i.e., QP+1 pruned of all its rows except those

of the jth section. Now, we can replace H(j)
i by its representation using the dominant parameters

αd, to get

V dαd,i = Q
(j)
P+1hi

or

αd,i = V +
d Q

(j)
P+1hi

where V +
d is the pseudo inverse of V d. Multiplying both sides of (1.2) by V +

d Q
(j)
P+1 yields a dynamical

recursion for αd

αd,i+1 = F ααd,i + Gαui (3.26)

where F α = fI and Gα =
√

1− f2V +
d Q

(j)
P+1 and where

E[αd,0α
∗
d,0] = Λd

Note that the dependence of Gα and αd on j has been suppressed for notational convenience. We

are now ready to implement the EM algorithm to the frequency domain system governed by the

dynamical equation (3.26). As we have seen in section 3.1, the algorithm will consist of an initial

estimation step, a maximization step, and an expectation step.

3.2.2 Initial (Pilot-Based) Channel Estimation

In the initial channel estimation step, the frequency domain system is described by equations (3.7)

and (3.26), reproduced here for convenience.

YIp,i = Xd,Ip,iαd,i + N ′
Ip,i (3.27)

αd,i+1 = F ααd,i + Gαui (3.28)

Now given a sequence i = 0, 1, . . . , T of pilot bearing symbols, we can obtain the optimum estimate

of {αi,d}T
i=0 by applying a forward-backward Kalman to (3.27)-(3.28)(see [55]), i.e., by implementing

the following equations
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Forward run: Starting from the initial conditions P 0|−1 = Π0 and α0|−1 = 0 and for i =

1, . . . , T, calculate

Re,i = RN ′ + Xd,Ip,iP i|i−1X
∗
d,Ip,i (3.29)

Kf,i = P i|i−1X
∗
d,Ip,iR

−1
e,i (3.30)

α̂i|i =
(
I −Kf,iXd,Ip,i

)
α̂i|i−1 + Kf,iY i (3.31)

α̂i+1|i = F αα̂i|i (3.32)

P i+1|i = F α

(
P i|i−1 −Kf,iRe,iK

∗
f,i

)
F ∗

α +
1
σ2

n

GαG∗
α (3.33)

Backward run: Starting from λT+1|T = 0 and for i = T, T − 1, . . . , 0, calculate

λi|T =
(
IP+N −X∗

d,Ip,iK
∗
f,i

)
F ∗

i λi+1|T + Xd,Ip,iR
−1
e,i

(
Y i −Xd,Ip,iα̂i|i−1

)
(3.34)

α̂i|T = α̂i|i−1 + P i|i−1λi|T (3.35)

The desired estimate is α̂i|T . This gives us an initial estimate to run the data-aided part of the

algorithm with.

3.2.3 Iterative (Data-Aided) Channel Estimation

For this part, we use the whole data symbol and not just the pilot part. Thus, in this case our system

is described by equations (3.5) and (3.26) also reproduced here for convenience

Y i = Xd,iαi,d + N ′
i (3.36)

αd,i+1 = F ααd,i + Gαui (3.37)

If the data symbols Xd,i were known, we would have employed the forward-backward Kalman-Filter

(3.29)-(3.35) on the above state-space model. Since the input is not available, we replace it by its

estimate along an expectation maximization algorithm. Specifically, along the lines developed in [42]

we can show that the FB Kalman filter needs to be applied to the following state space model



Y i

0


 =




E[Xd,i]

Cov[X∗
d,i]

1
2


αi,d +




N ′
i

0


 (3.38)
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αd,i+1 = F ααd,i + Gαui (3.39)

where the expectations in (3.38) are taken given the output Y i and most recent channel estimate

αd,i. The expectations that appears in (3.38) are calculated as we did in Section 3.1.2. In contrast to

the symbol by symbol EM algorithm of section 3.1, there are several ways of implementing the EM

iterations in the time-correlated multi-symbol case. In the symbol by symbol algorithm of Section

3, there was one dimension to iterate against (channel estimation vs data detection). When the

channels are time correlated over symbols as is the case here, there are several dimensions we can

iterate against:

1. We can iterate between channel estimation & data detection.

2. And we could also iterate against time using the Kalman filter where the previous channel

estimate informs the subsequent channel estimate.

Depending on how we schedule iterations across these two dimensions, we get different receivers. We

discuss two such filters here, the Cyclic and the Helix Kalman filters.

3.2.4 Cyclic FB Kalman

In the cyclic based Kalman, we initialize the algorithm using the FB Kalman implemented over the

pilot symbols.This is then used to initialize the data aided version, where the channel estimate is used

to obtain the data estimate, and that allows us to propagate the estimate to the next symbol. The

process is continued until the forward steps are completed followed by the backward run. The EM

steps are repeated again ( 2nd forward run followed by 2nd backward run and so on). In other words,

we iterate only once between channel estimation & data detection before invoking the Kalman to

move to the next symbol. The iterations thus trace circles over the OFDM symbols which motivates

the name Cyclic Kalman.

3.2.5 Helix based FB Kalman

The Helix based FB Kalman is a more general version of the Cyclic Kalman. The two filters are

initialized in the same way. However at each symbol, we iterate several times between channel
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estimate and data detection before moving on the next symbol (whereas the cyclic Kalman iterates

once between channel estimate and data estimate at each step). This allows to refine the channel

estimate as much as possible before propagating it using the Kalman to the next OFDM symbol.

The iterations in this case draw a helix shape, hence the name.

3.2.6 Using Code to Enhance the Estimate

In any practical system, an outer code is usually implemented that extends over several OFDM

symbols. The outer code can be used to enhance the data aided channel estimate. Specifically,

following data detection, the code can be invoked to enhance the data estimate (through error

correction). Our simulation shows that invoking the code can have a profound effect on performance.

Now the (hard) data obtained is more refined and hence can be used enhance the channel estimate

by employing the FB Kalman again.

3.2.7 Forward Kalman Filter

One drawback of the FB Kalman implementation is the latency and memory involved as one needs

to store all symbols to perform the backward run. One way around that is to implement forward

only Kalman which avoids the latency problem. The forward only Kalman thus suffers as a result in

performance and is not able to make use of the code to enhance the data estimate.

3.2.8 Estimating the channel in the time domain

For a fair comparison, we need to compare the estimate the channel Ĥ(FD)
obtained in the previous

section with the time domain based estimate. This is done by following the similar course for the

time domain. Pruning the time domain input/output relation is given by equation (1.8) results in

YIp = XIph + N Ip (3.40)

Deriving the MMSE estimator for the above equation we get

ĥ = RhX∗
Ip

[σ2I + XIpRhX∗
Ip

]−1YIp
(3.41)
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where Rh is the autocorrelation matrix of h. This estimate is then improved by applying the EM

algorithm to it, similar to the approach we have shown previously for frequency domain. The

minimization in this case reduces to

ĥ
(TD)

= arg min
h

{
‖Y −E[X]h‖2

R−1
N

+ ‖h‖2
B + ‖h‖2

R−1
h

}

where B = Q∗
P Cov[diag(X ∗)]R−1

N QP . The frequency domain based estimate is obtained as

Ĥ(TD)
= QP ĥ

3.3 Time Domain multiple access channel estimation

For fair comparison, we need to compare the frequency domain (LS and Kalman) receiver withe time

domain counter part. How do users estimate the channel in the time domain given their limited

share of the spectrum.To describe this, we just need to write the input/output equations seen by

each user. The imput/output eqation for the jth user is given by (see (3.1))

Y(j)
i = diag(X (j)

i )H(j)
i + N (j)

i

Now H(j)
i is related to the impulse response by (see (3.25))

H(j)
i = Q

(j)
P+1hi

where as described in Section 3.2.1, Q
(j)
P+1 is QP+1 pruned of all rows that dont belong to the jth

section. So, we can write

Y(j)
i = diag(X (j)

i )Q(j)
P+1hi + N (j)

i (3.42)

Equation (3.42) can be used for initial time-domain estimate using pilots and for symbol-by-symbol

EM-based estimation. If we use in addition the dynamic recursion of (1.2)

hi+1 = Fhi + Gui

we can implement the various kind of Kalman filters discussed in the previous section for time-domain

channel estimation.
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3.4 Simulation Results

We consider an OFDM system that transmits 6 symbols with 64 carriers and a cyclic prefix of length

P = 15 each with a time variation of f = 0.9 . The data bits are mapped to 16 QAM through Gray

coding (except for figures 3.1(a) and 3.1(b) which use a 4 QAM). The OFDM symbol serves 4 users

each occupying 16 frequency bins. In addition, the OFDM symbol carries 16 or 24 pilots equally

divided between the users. The channel impulse response consists of 15 complex taps (the maximum

length possible). It has an exponential delay profile E[|h0(k)|2] = e−0.2k and remains fixed over any

OFDM symbol. Where specified, an outer code is used to provide robustness. The outer code is 1/2

rate convolutional code. In what follows, we compare the performance of frequency domain based

channel estimation using various techniques for the both the coded and uncoded cases. We also

benchmark our method with the time domain method briefly described in Section 3.3 (see [42] also).

3.4.1 Effect of Modeling Noise

Figures 3.1(a) and 3.1(b) show the MSE and BER curves for the three cases considered in section

3.1 comparing the various treatment of the noise. We plot the figures 3.1(a) and 3.1(b) for constant

modulus using 16 pilots. As evident from the graphs, the inclusion of the modeling noise improves the

result.We also note that the expectation of the noise and the exact solution have almost comparable

results.
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Figure 3.1: (a) MSE (b) BER.
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3.4.2 EM based Least Squares

In order to see a fair comparison between the time domain and the frequency domain techniques

for a multiple access system, we compare the time domain LS estimate with the frequency domain

LS and LS with EM estimate. Figures 3.2-3.5 show the MSE of the channel estimate and the BER

performance for these methods for the uncoded case. Figures 3.3 and 3.5 show the BER performance

while figures 3.2 and 3.4 show the MSE at 16 and 24 pilots respectively. Comparing them, we see

that increasing the number of pilots improves the LS estimate, with the frequency domain method

wading better than the time domain method.
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Figure 3.2: MSE comparison EM based Least Squares (16 pilots).
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Figure 3.3: BER comparison EM based Least Squares (16 pilots).

3.4.3 Kalman Filter based Receivers

Figure 3.6(a) compares the BER performance of frequency domain Forward Kalman, Cyclic and

Helical Kalman filters with the time domain LS method and Helix Kalman for the uncoded case

at 16 pilots. As expected, we see that using Kalman filter improves the EM based estimate in

the frequency domain. We also see that Helix based Kalman performs better than other frequency

domain based techniques and that for the uncoded 16 pilot case, the frequency domain methods fairs

better than the time domain methods.

Figure 3.6(b) shows the same comparison for 24 pilots uncoded case. For the case of 24 pilots,

we note that though the time domain estimate methods perform better than frequency domain

methods, the performance of the frequency domain Helix Kalman is comparable to the time domain

Helix Kalman. Figure 3.7 compares the BER performances of frequency domain channel estimation

of various Kalman filters with the LS and LS EM estimate for the 16 pilot case. Here we utilize

the outercode to enhance the estimate. We see that the code enhancement technique is superior to

the rest of the techniques. Figure 3.8 shows the result of the comparison of frequency domain Helix

Kalman and coded Kalman with the time domain Helix Kalman (16 pilots). We can see that for the
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Figure 3.4: MSE comparison EM based Least Squares (24 pilots).
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Figure 3.6: BER comparison for various uncoded freq. domain methods (a) using 16 pilots (b) using 24

pilots.
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multiple access case, the frequency domain technique fairs better than the time domain estimation

method, while the coded Kalman outperforms all other techniques.
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In order to see a fair comparison between the time domain and the frequency domain techniques

for a multiple access system, we compare the frequency domain Helix Kalman with the time domain

Helix Kalman obtained from the procedure outlined in Section 3.3. We plot figure 3.9 for 24 pilots

with using the outercode and employing 6 eigenvalues per section to estimate the channel in the

frequency domain. As we can see from the figure, the frequency domain Helix Kalman outperforms

the time domain Helix Kalman.

3.5 Conclusion

We present an OFDM receiver design based on a semi-blind low complexity frequency domain channel

estimation algorithm for multi-access OFDM system. As opposed to the time domain case which

estimates the whole spectrum, we propose a frequency domain approach in which the user estimates

the part of the spectrum in which he operates. The advantage of this is reduction in computational

cost incurred by each user. Also, the user might not have access to the entire spectrum. We estimate

the channel parameters based on the eigenvalue technique, greatly reducing the number of parameters

to be estimated. The receiver uses the pilots to kick start the estimation process and then iterates
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Figure 3.9: BER comparison of time and frequency domain uncoded techniques (24 pilots).

between channel and data recovery. Our receiver utilizes data constraints (finite alphabet set, code,

and pilots) and channel constraints (finite delay spread, frequency correlation, time correlation)

constraints. Thanks to the decoupled relation in the frequency domain, data recovery is done on

an element by element basis while the channel estimation boils down to solving a regularized least

squares problem. We propose to improve the estimate making use of the time correlation information

of the channel by relaxing the latency requirement. For this purpose, we employ Cyclic and Helix

based FB Kalman filters and use the outer code to enhance the channel estimate. We make use of

both the frequency and time correlation which results in a relatively low training overhead. The

simulation results show the performance of our algorithm. Our results maybe extended to multiple

antenna OFDM systems.

3.6 Appendix A

Now to calculate an expectation of the form E[DBD], which appears in (3.16), we note that by our

assumption different elements of D are independent making the expectation that involves them in
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E[DBD] separable, i.e. for these terms, we have

E[DBD∗] = E[D]BE[D∗] (3.43)

The identical forms, however, interact according to

E[DBD] = E[Ddiag(B)D] (3.44)

= E[DD∗]E[diag(B)] (3.45)

By combining (3.43) and (3.45), we see that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B)
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Chapter 4

Conclusions, Recommendations,

Outcomes, and Publications

4.1 Conclusions

In this report, we studied the problem of channel estimation and data detection for OFDM transmis-

sion over block fading time-variant channels. Specifically, we pursued a frequency domain approach

as opposed to the time-domain approach that is heavily pursued in literature. A frequency domain

approach (for channel estimation and data detection) makes much more sense than a time-domain

especially in multiple access OFDM.

We pursued two approaches for channel estimation, namely, an interpolation approach and an

eigenvalue approach. The interpolation approach which was the basis of our original project proposal

turned out to be ill-suited and produced unsatisfactory BER behavior. The eignenvalue approach

proposed in Chapter 3 turned out to be the more natural approach to pursue for the problem at

hand.

The eigenvalue approach was extended in several ways. It was applied to time-variant case where

the channel changes from one symbol to the next according to some Doppler Frequency. Also,

the performance of the channel estimation algorithm was enhanced by applying the expectation-

maximization algorithm for joint data-detection and data-aided channel estimation.
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The expectation maximization algorithm for channel estimation and data-detection boils is noth-

ing but a Forward-Backward Kalman filter. The EM based Kalman implements two types of itera-

tions (channel estimation and data detection). The performance of the receiver is affected by how

these two types of iterations are scheduled. We particularly focused on two type of implementations

called the cyclic and helix forward-backward Kalman. We showed that the helix Kalman has a su-

perior performance. We also implemented the forward-only Kalman which is much less complex and

suffers from no latency at the cost of inferior performance to the FB-Kalman.

4.2 Recommendations

Frequency domain receivers for multiple access OFDM are very promising. However, more research

needs to be done to improve their performance. Specifically, the receiver assumed the knowledge of

frequency correlation at the receiver. If we further assume that this correlation is available at the

transmitter, one can further improve the performance by using that for optimal placement of pilots.

We have also assumed that the receiver has knowledge of such a priori information as the frequency

correlation and time-correlation. This is not expected to be naturally available to the receiver, i.e.,

it need to be estimated. Also, one needs to investigate the effect of errors in the estimation of these

parameters on the performance of the algorithms proposed in this project.

4.3 Summary of the Outcome of the Project Results

The project resulted in the following outcomes

1. Detailed literature review of available algorithms for channel estimation in the time and fre-

quency domain.

2. Careful study of the advantages and challenges of channel estimation in the frequency and time

domains

3. An interpolation-based algorithm for channel estimation in the frequency domain.

48



4. An eigenvalue-based approach for channel estimation in the frequency domain.

5. A forward-backward Kalman receiver for channel estimation in the frequency domain.

4.4 Publications that Resulted from the Project

Here is a summary of the publications that resulted from this work

1. T. Y. Al-Naffouri “An EM-Based Forward-Backward Kalman Filter for the Estimation of

Time-Variant Channels in OFDM” IEEE Trans. Signal Processing, vol. 55, Jul. 2007.

2. T. Y. Al-Naffouri and A. Mukaddam ”Frequency Domain Estimation of Multiple Access OFDM”

IEEE International Conference on Signal Processing and Communication, Nov. 2007, Dubai,

UAE.

3. T. Y. Al-Naffouri and Muhammad Saqib Sohail, ”An EM based frequency domain channel

estimation algorithm for multi access ODFM systems” submitted to Elsavier Digital Signal

Processing Journal.

4. T. Y. Al-Naffouri and Muhammad Saqib Sohail ”Frequency domain estimation of time varying

multiple access OFDM channels: An EM approach”, to be submitted to ICASSP 2009.

5. T. Y. Al-Naffouri, Ahmed Quadeer, and Muhammad Saqib Sohail “Iterative Forward-Backward

Kalman Filtering for Data Recovery in (Multiuser) OFDM Communications” Book Chapter

Under preparation for submission to

The project also resulted in the following Master thesis:

Mr. Muhammad Saqib Sohail, “Adaptive Algorithm for Channel Estimation: Using a Priori

Information for Optimal Design,” Electrical Engineering Department, King Fahd University of Pe-

troleum and Minerals, June, 2008.
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