
The Effect of Spatial Correlation on the Capacity of

Multi-Input Multi-Output Broadcast Channels with

Partial Side Information

Principal Investigator: Dr. Tareq Y. Al-Naffouri
Department of Electrical Engineering

KFUPM, Dhahran 31261
Saudi Arabia

e-mail: naffouri@kfupm.edu.sa

University Project IN070342
Final Report



Contents

1 Introduction to Broadcast Channels and Random Beamforming 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Multiuser Communications, Broadcast Channels, and Dirty Paper Coding . . . 1

1.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Dirty Paper Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Shortcomings of DPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Multiuser Diversity as an Alternative to DPC . . . . . . . . . . . . . . . . . . . 6

1.4 Random Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Other Beamforming Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Performance of RBF under Non-ideal Conditions . . . . . . . . . . . . . . . . . 8

1.5 Project Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Effect of Correlation on DPC and Random Beamforming 10

2.1 Effect of Transmit Correlation on the Sum-Rate of DPC . . . . . . . . . . . . . . . . . 10

2.2 Effect of Transmit Correlation on Random Beamforming . . . . . . . . . . . . . . . . . 12

2.2.1 Random Beamforming with Channel Whitening . . . . . . . . . . . . . . . . . 13

2.3 Sum-Rate of Random Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Indefinite Quadratic Forms in Gaussian Random variables . . . . . . . . . . . . 14

2.3.2 Using Contour Integration for Calculating the CDF . . . . . . . . . . . . . . . 16

1



2.3.3 Sum-Rate of Deterministic Beamforming . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Sum-Rate of Random Beamforming with Precoding . . . . . . . . . . . . . . . 22

2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Appendix A: Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Appendix B: Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Opportunistic Beamforming with Precoding 29

3.1 Beamforming with Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Random Beamforming with Optimum Precoding . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Determining Qopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Determining Dopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Approximate Precoding Matrcies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Random Beamforming with Zero Forcing . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Random Beamforming with MMSE Precoding . . . . . . . . . . . . . . . . . . 34

3.3.3 An approximate Precoding Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Appendix: Calculating the CDF of Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Conclusions, Recommendations, Outcomes, and Publications 47

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Summary of the Outcome of the Project Results . . . . . . . . . . . . . . . . . . . . . 49

4.4 Publications that Resulted from the Project . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Talks that Resulted from the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Master Thesis Related to the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2



Abstract

This report considers the effect of spatial correlation between transmit antennas on the sum-rate

capacity of the MIMO Gaussian broadcast channel (i.e., downlink of a cellular system). Specifically,

for a system with a large number of users n, we analyze the scaling laws of the sum-rate for the

dirty paper coding and for different types of beamforming transmission schemes. When the channel

is i.i.d., it has been shown that for large n, the sum rate is equal to M log log n + M log P
M + o(1)

where M is the number of transmit antennas, P is the average signal to noise ratio, and o(1) refers

to terms that go to zero as n → ∞. When the channel exhibits some spatial correlation with a

covariance matrix R (non-singular with Tr(R) = M), we prove that the sum rate of dirty paper

coding is M log log n + M log P
M + log det(R) + o(1). We further show that the sum-rate of various

beamforming schemes achieves M log log n + M log P
M + M log c + o(1) where c ≤ 1 depends on the

type of beamforming. We can in fact compute c for random beamforming proposed in [26] and more

generally, for random beamforming with precoding in which beams are pre-multiplied by a fixed

matrix. In the second part of the report, we introduce various precoding matrices to reduce the

hit that results from correlation. We obtain the optimum precoding matrix and various suboptimal

precoding matrices. Our theoretical results are confirmed in both parts by simulations.



Chapter 1

Introduction to Broadcast Channels

and Random Beamforming

1.1 Introduction

Future breakthroughs in wireless communications will be mostly driven by applications that require

high data rates [6]. While increasing the link budget and/or bandwidth can accommodate this

increase in data rate, such a solution would not be economical. A more cost effective solution is to

exploit the space dimension by employing multiple antennas at the transmitter and receiver. Multiple

input multiple output (MIMO) communication has thus been the focus of a lot of research which

basically demonstrated that the capacity of a point to point MIMO link increases linearly with the

number of transmit and receive antennas (an excellent overview of the research on this problem can

be found in [28]).

1.1.1 Multiuser Communications, Broadcast Channels, and Dirty Paper Coding

Research focus has shifted recently to the role of multiple antennas in multiuser systems, especially

broadcast scenarios (i.e., point to multipoint communication) as downlink scheduling is the major

bottleneck for future broadband wireless networks. The broadcast channel resembles downlink com-

munication in a cellular system, where the base station is to transmit to a group of users (other



applications with a similar broadcast scenario include the downlink of a DSL link and WLAN where

the access point is to transmit to several laptops).

In these scenarios, one is usually interested in 1) quantifying the maximum possible rate of a

transmitter when multiple users are present and in 2) devising techniques for achieving these rates

[37]. These questions have been settled recently by using a technique similar to writing on dirty

paper and hence known as dirty paper coding (DPC). While the dirty paper coding (DPC) solves

the broadcast problem optimally, it is too computationally expensive and requires too much feedback

as the transmitter needs the channel state information for all intended users.

Researchers have thus attempted to find simpler techniques to achieve performance close to

(DPC) capacity. Of particular importance are techniques that exploit multiuser diversity to increase

spectral efficiency in wireless networks. Specifically, in a network with a large number of users whose

channels fade independently, the transmitter can choose the subset of users with the highest fade

margin, thus maximizing the sum-rate capacity. Several schemes that make use of this phenomenon

have been suggested in literature, e.g., [25], [27].

One (multiuser diversity) technique that has attracted a lot of attention recently is based on

random beamforming [27]. Specifically, a transmitter equipped with M antennas sends M random

beams. Each user would calculate the M SINR’s (one for each beam) and feedback the maximum

SINR along with its index. The transmitter would in turn rank the users according to their SINR’s

and transmits to the M best ones. Not only does this method require much less feedback than the

DPC approach, but it also asymptotically (i.e., in the presence of large number of users) achieves

the same performance [27].

The purpose of this project is to study the effect of transmit antenna (spatial) correlation on

various multiuser schemes for multiuser broadcast access. Specifically, we investigate the effect of

spatial correlation on the asymptotic capacity1 of DPC and random beamforming, as well as other

multiaccess techniques such as deterministic beamforming and channel inversion. The project also

investigates the use of various precoding techniques to maximize the system’s sum-rate.
1By asymptotic capacity we mean the capacity as we increase the number of users.
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This report is organized as follows. This chapter introduces the system model and also performs

a literature review of various methods for multiuser broadcast channels, including DPC and random

beamforming. Chapter 2 studies the effect of spatial correlation on the sum-rate of DPC and random

beamforming and its variants. Chapter 3 studies the effect of various precoding techniques on the

sum-rate of RBF and determines the precoding that maximizes the sum-rate. We conclude the report

in Chapter 4 which provides our recommendations and future work.

1.2 System Model

In this project, we consider a multi-antenna Gaussian broadcast channel. Specifically, we have one

transmitter (base station) with M antennas and n users (receivers) each equipped with one antenna.

Since in a typical cellular system, the number of users is much larger than the number of transmit

and receive antennas, we will assume that n � M throughout the report.

Let S(t) be the M × 1 vector of the transmit symbols at time slot t, and let Yi(t) be the received

signal at the i’th receiver. We can then write

Yi(t) =
√

ρiHiS(t) + Wi, i = 1, . . . , n, (1.1)

where Wi is the additive noise which is complex Gaussian with zero mean and unit variance, CN(0, 1).

The channel Hi is a 1×M complex channel vector, known perfectly to the receiver, and distributed

as CN(0,R). The M×M covariance matrix R is a measure of the spatial correlation and is assumed

to be non-singular with Tr(R) = M 2

We also assume that Hi follows a block fading model, i.e., it remains constant during a coherence

interval T and varies independently from one such interval to the next. We finally note that the

channel is identically distributed across users but is independent from one user to another.
2We assume that the spatial correlation is invariant across users. This assumption is realistic because this is

effectively the transmit correlation among antennas at the base station. In the case when R is rank deficient, the

results of this report apply with M replaced by the rank of the autocorrelation matrix and with the SNR kept fixed at

P/M .
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Denoting the average rate of the i’the user by Ri over all the channel realizations, we are interested

in analyzing the behavior of the sum-rate, i.e.,
∑n

i=1 Ri, of downlink for large n.

Remarks

1. Limiting the study to the Gaussian channel case is a common practice in literature. See for

example the overview [28] which limits the discussion almost exclusively to the Gaussian case.

Nevertheless, the Gaussian assumption makes the problem much more tractable and allows us

to get a hint of how systems behave in the non-Gaussian case.

2. We assume that the channel to exhibit some spatial correlation. One might argue that the given

the high frequencies that are in use today, such correlation is negligible. While this might be

true, one also needs to keep in mind that correlation results from the presence of local scatterers

around the base station which introduces correlation regardless of the frequency range.

1.3 Literature Review

1.3.1 Dirty Paper Coding

The capacity of point to point multi-antenna systems has been investigated with different assumption

for the channel state information (CSI) (i.e., whether the receiver/transmitter knows the channel or

not). As it is shown in [2, 3] if the receiver knows the channel perfectly, the capacity scales like

M log ρ no matter the transmitter knows the channel or not.

While the full CSI in the transmitter does not seem to be beneficial in the point to point com-

munication, the knowledge of the channel is crucial in point to mutlipoint broadcast channels [6, 28].

For the case with full CSI available at both the transmitter and the receivers, it is shown that the

sum rate capacity3 of the Gaussian broadcast channel can be achieved by using dirty paper coding

[8, 18, 19]. Intuitively, one can write on a dirty paper by choosing the link in accordance with the
3The sum rate capacity is the maximum achievable throughput of the system, which corresponds to the sum of all

users information rates.
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type of dirt present. Similarly, if the transmitter knows the channels of all users, it knows the inter-

ference signal felt by each user and so can design the transmitted signal accordingly. More precisely,

the sum rate capacity, RDP , can be written as,

RDP = E

{
max

{P1,...,Pn,
P

Pi=Mρ}
log det

(
1 +

n∑
i=1

H∗
i PiHi

)}
(1.2)

where Hi is 1×M channel matrix of receiver i and Mρ is the total average power.

In a system with a large number of users n, and for fixed M and P, it has been shown that the

sum-rate of DPC behaves as

RDPC = M log log n + M log
P

M
+ o(1), (1.3)

when there is no spatial correlation, i.e., R = I [26]. Scaling of the sum rate capacity has also been

investigated for other regions of n, M , and P (see [13, 10, 12] for details).

1.3.2 Shortcomings of DPC

There are two major drawbacks to the DPC approach. First, it is too computationally complex. The

second problem is that it requires full CSI feedback from all active users to the transmitter of the base

station (this feedback requirement increases with the number of antennas and users and with the

decrease of the coherence time of the system). Moreover, and while (suboptimal) computationally less

intensive techniques exist (e.g. channel inversion and Tomlinson-Harashima precoding [22, 23, 24]),

these methods require full channel knowledge at the transmitter, just like DPC.

Research has thus focused on devising algorithms for multiuser broadcast channels which attain

performance similar to DPC while avoiding its pitfalls. Towards this end, and to gain a better

understanding of what is optimally possible, Sharif and Hassibi investigated the scaling laws of DPC

in the presence of large number of users. They showed in [26] that for large number of users n, the

DPC capacity scales like M log log n. 4

4The term M log log n is never negative because we are dealing here with high values of n.
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1.3.3 Multiuser Diversity as an Alternative to DPC

The most distinct difficulty associated with a wireless network is the fading or time-variant nature

of the communication channel. Many diversity techniques have been proposed to maximize the

reliability of a single user (point-to-point) channel [28], [18]. Multiuser diversity provides a new

dimension to play with. It stems from the fact that users’ channels are independent as each user is

located at a random position in the cell [6]. Serving the best user at each time instant guarantees

using channels at fading peak levels rather than average level [3]. Many multiuser-based diversity

techniques have been proposed in literature including [25]–[29]. One of the most promising techniques

is the random beamforming technique [26] which we introduce next.

1.4 Random Beamforming

Given these drawbacks of DPC, research has focused on devising algorithms for multiuser broadcast

channels that have less computational complexity and/or less feedback and still achieve most of the

sum-rate promised by DPC such as random beamforming [25] and zero forcing [9] (see also [16, 7]).

A random beamforming scheme was proposed in [26] where the transmitter sends multiple (in fact

M) random orthonormal beams chosen to users with the best signal to interference ratio (SINR).

In this scheme the only feedback required from each user is the SINR of the best beam and the

corresponding index.

Specifically, the transmitter chooses M random orthonormal beam vectors φm (of size M × 1)

generated according to an isotropic distribution. Now these beams are used to transmit the symbols

s1(t), s2(t), . . . , sM (t) by constructing the transmitted vector

S(t) =
M∑

m=1

φm(t)sm(t), t = 1, . . . , T (1.4)

After T channel uses, the transmitter independently chooses another set of orthogonal vectors {φm}

and constructs the signal vector (according to (1.4)) and so on. From now on and for simplicity, we
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will drop the time index t. The signal Yi at the i’th receiver is given by

Yi =
√

PHiS + Wi (1.5)

=
√

P

M∑
m=1

Hiφmsm + Wi, i = 1, . . . , n (1.6)

where E(SS∗) = 1
M I since the si’s are assumed to be identical and independently assigned to different

users. The i’th receiver uses its knowledge of the effective channel gain Hiφm, something that can

be arranged by training, to calculate M SINR’s, one for each transmitted beam

SINRi,m =
|Hiφm|2

M
P +

∑
k 6=m |Hiφk|2

, m = 1, . . . ,M. (1.7)

Each receiver then feeds back its maximum SINR, i.e. max
1≤m≤M

SINRi,m, along with the maximizing

index m. Thereafter, the transmitter assigns sm to the user with the highest corresponding SINR,

i.e. max
1≤i≤n

SINRi,m. If we do the above scheduling, the throughput for large n can be written as [33]

5,

RRBF = ME log
(

1 + max
1≤i≤n

SINRi,m

)
+ o(1) (1.8)

where the term o(1) accounts for the small probability that user i may be the strongest user for more

than one signal sm [26].

To further quantify (1.8), [26] used the fact that the SINRi,m’s are iid over i and employed

extreme value theory [36] to argue that max
i≤n

SINRi,m behaves like P
M log n and hence concluded that

the sum rate capacity scales as in (1.3), meaning that the sum-rate of random beamforming behaves

the same as that of DPC for large number of users.

1.4.1 Other Beamforming Schemes

The scaling result (1.3) applies for iid channels. As such, we derive in Section 2.2 the scaling law of

this scheme for correlated channels. Alternatively, given this correlation, we consider the following

beamforming schemes.
5The proof follows from the fact the when n is large the maximum SINR and the M ’th maximum SINR behave

quite similarly.
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Random beamforming with channel whitening In the presence of correlation, one can first

whiten the channel and then use random beamforming scheduling. In this case, and instead of

using Φ as the beamforming matrix6, we would use
√

αR−1/2Φ where α is a constant to make

sure that the transmit symbol has an average power of 1. The scaling of this scheme would

follow directly from the scaling of random beamforming over iid channels (see Section 2.2.1).

Random beamforming with general precoding More generally, we can precode with a general

matrix
√

αA−1/2 before beamforming, i.e. we use
√

αA−1/2Φ to transmit the information

symbols. The scaling of this scheme follows directly from the scaling of random beamforming

over correlated channels and so is considered in Sections 2.3 and 2.3.4. We go one step further

and show how to compute the sum-rate when the beamforming matrix is premultiplied by the

full rank matrix A.

Deterministic beamforming Finally, by fixing the beamforming matrix Φ, we obtain determin-

istic beamforming, a scheme analyzed by Park and Park [21] (for the two antenna case) and

which we further analyze in Section 2.3.3.

1.4.2 Performance of RBF under Non-ideal Conditions

This very promising performance of random beam-forming has prompted several researchers to study

the effect of various nonideal conditions on its performance. Thus, Fakherdeen [14] studied the effect

of frequency correlation, Vikali [15] studied the effect of estimation error, Gesbert [16] considered

the effect of time-variation, and [21] quantified the effect of spatial correlation on deterministic beam

forming (using two transmit antennas only).

1.5 Project Objective

The objective of this project is to study the scaling of various broadcast techniques for large number

of users in the presence of spatial correlation. Specifically, the project studies the effect of correlation
6Note that Φ is an orthonormal matrix composed of the beam (column) vectors φ1, . . . , φM .
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on the asymptotic sum-rate of DPC. It also studies the effect of correlation on the asymptotic rate of

random beamforming and some of its variants. As an extension of the original proposal, the project

designs optimum precoding for random beamforming that minimizes the hit on the sum-rate due to

correlation.
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Chapter 2

Effect of Correlation on DPC and

Random Beamforming

This chapter quantifies the effect of correlation on DPC and random beamforming and its variants.

The chapter shows that correlation results in a hit on the sum-rate that is a function of the eigenvalues

of the correlation matrix. The dependence of the hit on the eigenvalues is in turn dependent on the

broadcast technique used. As a by product of our development, we will come up with a new technique

for evaluating the CDF of ratios of sum of squares of correlated Gaussian variables.

2.1 Effect of Transmit Correlation on the Sum-Rate of DPC

In this section, we derive the scaling laws of DPC for correlated channels. As mentioned earlier, dirty

paper coding achieves the sum-rate capacity of the multi-antenna broadcast channel. The sum-rate

capacity is given by (1.2) and its behavior when n is large is given by (1.3) for iid channels. It turns

out that when the number of users is large, the sum-rate capacity will be decreased by a constant

which depends on the covariance matrix of the channel. It should be mentioned that throughout the

paper, we assume R is fixed and non-singular with Tr(R) = M .

The next theorem proves this statement. The proof is along the same line as the proof for the

i.i.d. case (as shown in [26]) with the only difference that the lower bound rather than being achieved

10



with random beamforming is achieved with a special type of deterministic beamforming. We first

give the lower bound in the following lemma.

Lemma 2.1: Consider a Gaussian broadcast channel with a channel covariance matrix R which

is non-singular with Tr(R) = M . Let there be one transmitter with M antennas and n users with

single antennas that have access to the CSI and the transmitter knows the CSI perfectly. We assume

the transmitter uses the deterministic beamforming matrix Φ = U∗ where U is the unitary matrix

consisting of the eigenvectors of R. Then for large n, the sum-rate of this scheduling is

RBF−D = M log log n + M log
P

M
+ M log M

√
det(R) + o(1). (2.1)

Proof: See Section 2.3.3 for the proof.

Clearly (2.1) is a lower bound for the sum-rate capacity. In the next theorem we show that (2.1)

is indeed an upper bound for the sum-rate as well.

Theorem 2.1: Consider a Gaussian broadcast channel with an autocorrelation matrix R defined

in Lemma 2.1. Let there be one transmitter with M antennas and n users with single antennas that

have access to the CSI. Assume further that the transmitter knows the CSI perfectly. The sum-rate

capacity (which is achieved by DPC) scales like

RDPC = M log log n + M log
P

M
+ M log M

√
detR + o(1), (2.2)

for large n.

Proof: Lemma 2.1 implies that the right hand side of (2.2) is achievable. All we need to prove

the theorem is to show that the sum-rate of DPC can not be larger than (2.2). We use the sum rate

capacity expression given in (1.2) to obtain an upper bound for the sum-rate. To this end, define

Hi = HwiR
1
2 , where Hwi is the gaussian channel with zero mean and variance 1 (N(0, I)). With

this decomposition, the sum-rate capacity can be written as

RDPC = E

{
max

{P1,...,Pn,
P

Pi=P}
log det

(
R−1 +

n∑
i=1

H∗
wi

PiHwi

)
det(R)

}
(2.3)
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Now using the geometric-arithmetic mean inequality det(A) ≤
(

Tr(A)
M

)M
, we obtain

n∑
i=1

Tr
(
H∗

wi
PiHwi

)
≤ max

i
Tr(H∗

wi
Hwi)

n∑
i=1

Pi

= max
i
‖Hwi‖2P

to replace the log det with an upper bound

log det

(
R−1 +

n∑
i=1

H∗
wi

PiHwi

)
≤ M log

(
1
M

Tr(R−1) +
1
M

n∑
i=1

Tr(H∗
wi

PiHwi)

)

≤ M log
(

1
M

Tr(R−1) + max
i
‖Hwi‖2 P

M

)
Since ‖Hwi‖2 is χ2(2M) distributed, with high probability, the maximum max

i
‖Hwi‖2 behaves like

log n + O(log log n). Thus,

RDPC ≤ M log
(

Tr(R−1)
M

+
P

M
log n

)
+ log detR + o(1) (2.4)

For large n, the term Tr(R−1)
M is negligible compared to P

M log n and 2.4 simplifies to

RDPC ≤ M log log n + M log
P

M
+ M log M

√
detR + o(1)

which is the desired upper bound. This completes the proof of the theorem.

2.2 Effect of Transmit Correlation on Random Beamforming

The deterministic beamforming scheme of Lemma 2.1 asymptotically achieves the DPC sum-rate.

However it has the drawback that, unless the Hi’s change very rapidly over different channel uses, it

will often transmit to a fixed set of users. To make the scheduling more short-term fair, it is useful

to further randomize the user selection by random beamforming (see [25, 26] for more details). In

this section, we analyze the effect of correlation on the sum-rate of random beamforming. We start

by the simplest case in which the beamforming matrix is multiplied by R−1/2 in order to whiten the

channel. We then turn our attention to the random beamforming scheme and finally use it to deduce

the sum rates of deterministic beamforming and beamforming with general precoding.
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2.2.1 Random Beamforming with Channel Whitening

To whiten the channel, we multiply all the beams with
√

αR−1/2 where α is a normalization factor.

The transmit symbol is therefore equal to

S(t) =
M∑

m=1

√
αR−1/2φm(t)sm(t) (2.5)

We choose α to satisfy the power constraint– that the transmit symbol average power is bounded by

unity,

E{αS∗R−1S} = αE{Tr(SR−1S∗)}

= αE{Tr(R−1S∗S)}

= αTr(R−1E(S∗S))}

= α
Tr(R−1)

M
(2.6)

Thus, the constraint E{αS∗R−1S} ≤ 1 implies that α ≤ M
Tr(R−1)

. We can therefore write the SINR

as

SINRi,m =
|HiR

−1/2φm|2
M
Pα +

∑
k 6=m |HiR−1/2φk|2

=
|Hw

i φm|2
M
Pα +

∑
k 6=m |H

w
i φk|2

, m = 1, . . . ,M (2.7)

where Hw
i = HiR

−1/2 has covariance of I and therefore has i.i.d. Gaussian entries with zero mean

and unit variance. Therefore we can apply the random beamforming result of [26] to obtain the sum

rate of random beamforming with channel whitening. This is summarized in the following Theorem.

Theorem 2.2: Consider a Gaussian broadcast channel with a channel covariance matrix R

defined in Lemma 2.1. Let there be one transmitter with M antennas and n users with single

antennas that have access to the CSI. If the transmitter knows the channel autocorrelation perfectly,

then the sum rate capacity for random beam forming with channel whitening (denoted by RBF−W )

is given by

RBF−W = M log log n + M log
P

M
−M log

Tr(R−1)
M

+ o(1) (2.8)

for sufficiently large n. When the the channel is i.i.d, Theorem 2.2 reduces to the already known

result of [26]. It is also worth mentioning that (2.8) is less than the sum-rate achieved by DPC in

(2.2).
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2.3 Sum-Rate of Random Beamforming

In this section, we study the effect of transmit correlation on random beam-forming. To do this, we

need to derive the CDF and pdf of the SINR defined in (1.7). The sum rate capacity of random

beamforming is given by (1.8). Now consider the expectation in (1.8). The averaging here is done

over Hi and Φ in the following order,

E log
(

1 + max
1≤i≤n

SINRi,m

)
= EΦ

{
EH′

is|Φ log
(

1 + max
1≤i≤n

SINRi,m

)
|Φ
}

(2.9)

i.e., we evaluate the expectation by first conditioning on Φ and calculating the expectation over Hi

and we subsequently average over Φ. The advantage of doing so is that Φ is common among all

users and so, by conditioning over Φ, all the SINR’s, SINR1,m, . . . ,SINRn,m remain iid. This in turn

allows us to evaluate max
1≤i≤n

SINRi,m using extreme value theory provided we can evaluate the CDF

(and pdf) of the SINR. Once the CDF is available, we appeal to results in extreme value theory to

obtain the behavior of max
1≤i≤n

SINRi,m when n is large and proceed to calculate the expectation in

(2.9). With the scaling law for random beamforming at hand, it becomes straightforward to obtain

the scaling laws of random beamforming with precoding and of deterministic beamforming.

It turns out that the main challenge lies in calculating the CDF of the SINR. When the channel is

iid, calculating the CDF is straightforward as the SINR numerator and denominator are independent

[26]. This ceases to be the case in the presence of correlation.

2.3.1 Indefinite Quadratic Forms in Gaussian Random variables

One can look at the CDF calculation of the SINR as calculating the CDF of an indefinite quadratic

form in Gaussian random variables. To see this, note that

Pr{SINR ≤ x} = Pr{Hi((1 + x)φmφ∗m − xI)H∗
i <

x

ρ
} (2.10)

Now the term Hi((1 + x)φmφ∗m − xI)H∗
i is an indefinite sum of squares of correlated Gaussian

random variables and rho represents the user’s average SNIR. Before we evaluate the distribution of

this variable, let’s perform a quick review of approaches used to evaluate the distribution of quadratic

forms.
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Quadratic forms in Gaussian variables appear in many applications in signal processing, com-

munications, and statistics. Several articles have been devoted to such study. Thus, Tzitras in [38]

considered the distribution of positive definite quadratic forms in real and complex Gaussian vari-

ables. He provided necessary and sufficient conditions on when the quadratic form can be written

as a sum of independent Gamma variables. His approach was to invert the expression for the char-

acteristic function and the expressions he arrived at were almost always in the form of infinite series

(for both the central and noncentral cases)

In [39], Raphaeli considered the distribution of special indefenite quaratic forms and computed

the resulting CDF as an infinite series of Luagerre polynomials. The series obtained however are

difficult to manipulate to find the pdf or moments. Also, it is not clear how Raphaeli’s method can

be used to treat the real case and how it simplifies in the central case. Shah and Li used Raphaeli’s

result in [40] to evaluate the distribution of quadratic forms in Gaussian mixtures.

Biyari and Lindsey considered in [41] a specific indefinite quadratic form and used the character-

istic function approach to obtain expressions for the pdf and CDF. The series expansions obtained

are difficult to manipulate.

More recently, Simon and Alouini [42] considered the CDF of the difference of two independent

chi-square random variables and obtained a closed form expression for the value of the CDF at zero.

They used their derivation to evaluate the pdf of a ratio of two such variables. In a related extension

[44], Holm and Alouini evaluated the sum and difference of two correlated Nakagami variates in terms

of the McKay distribution and then used that to evaluate the CDF of the ratio of such variables.

There are several drawbacks for approaches above:

1. The approaches above are not unified in nature. Various techniques are used to treat various

cases (complex Gaussian, real Gaussian, central variables, noncentral variables, ... etc).

2. These approaches almost always end up with series expansions whose coefficients are difficult

to evaluate. The series are difficult to manipulate further to obtain the moments or CDF.

3. They focus on obtaining the pdf from the characteristic function when the CDF is a more useful
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expression. The reason is that the CDF (just like the pdf) can be used to obtain the moments

(through integration). Moreover, the CDF directly gives an expression for the probability

(when the pdf needs to be integrated to obtain this information).

2.3.2 Using Contour Integration for Calculating the CDF

The problem with the above approaches is that they attempt to characterize the behavior of a variable

by evaluating the characteristic function. They subsequently attempt to invert it to evaluate the pdf

(which requires another integration to evaluate the CDF). In contrast, and as we shall soon see, we

will evaluate the CDF directly. In evaluating the CDF, we use a contour integral representation of

the unit step and find the CDF using the Gaussian integral.

Distribution of SINRi,1 Given Φ

We first obtain the complementary CDF of SINRi,m defined in (1.7) by defining the auxiliary variable

S as

S = −x

ρ
+ Hi((1 + x)φmφ∗m − xI)H∗

i (2.11)

Here ρ = P
M just to simplify the notation and where the beamforming matrix Φ is given and Hi is

an 1×M vector with Gaussian entries and with covariance matrix R. We can write the probability

that SINRi,m > x as,

P (SINRi,1 > x) = P (S > 0) =
∫ ∞

−∞
P (Hi)u(S)dHi (2.12)

=
1

πM det(R)

∫ ∞

−∞
e−HiR

−1H∗
i u(S)dHi (2.13)

where u(S) is the unit-step function. To evaluate P (S > 0), we can view S as a weighted sum of

correlated Gaussian random variables and employ one of various techniques that have been suggested

in the literature. Unfortunately, the expressions we get involve recursions and infinite sums and

hence don’t lend themselves to further mathematical manipulations. Instead, we use the following

representation of the unit step function

u(S) =
1
2π

∫ ∞

−∞

e(jω+β)S

jω + β
dω (2.14)
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which is valid for any β > 0. This frees (2.13) from the constraint on S and, as we shall see, allows

us to compute (2.13) in closed form.

Using (2.14), we can express (2.13) as

P (S > 0) =
1

2πM+1 det(R)

∫ ∞

−∞
dω

1
jω + β

∫ ∞

−∞
dHie

(jω+β)S−HiR
−1H∗

i

Using the definition of S in (2.11), we get

P (S > 0) =
1

2π det(R)

∫ ∞

−∞
dω

e
−(jω+β)x

ρ

jω + β

∫ ∞

−∞
dHie

−HiR̃H∗
i

=
1

2π det(R)

∫ ∞

−∞
dω

e
−(jω+β)x

ρ

jω + β

1
det(R̃)

(2.15)

where

R̃ = R−1 + x(jω + β)I − (1 + x)(jω + β)φmφ∗m (2.16)

Evaluating the roots of R̃ Now to evaluate the integral with respect to ω, we need to find the

roots of det(R̃) with respect to ω. To this end, note that

det(R̃) = det(U∗Λ−1U + (jω + β)(xI − (1 + x)φmφ∗m)) (2.17)

= det(Λ−1 + (jω + β)(xI − (1 + x)φmφ
∗
m)) (2.18)

= det(Λ−1) det(−A) det((jω + β)I −A−1) (2.19)

where U∗Λ−1U represents the eigenvalue decomposition of R−1, φm
∆= Uφm, and

A = (1 + x)Λ1/2φmφ
∗
mΛ1/2 − xΛ (2.20)

Now

det(Λ−1) det(−A) = det(xI − (1 + x)φmφ
∗
m) (2.21)

= xM−1(x− (1 + x)) (2.22)

= −xM−1 (2.23)

because xI − (1 + x)φmφ
∗
m has x as an eigenvalue with multiplicity M − 1 and an eigenvalue at

x− (1 + x)‖φm‖2 = −1. We can thus write

det(R̃) = −xM−1 det((jω + β)I −A−1)
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Now consider the equation

det((jω + β)I −A−1) = 0 (2.24)

The roots of this equation, with respect to jω + β, are 1/λi(A) where λi(A) is an eigenvalue of the

matrix A. Since A is Hermitian and nonsingular, these eigenvalues are real and nonzero. To find

these eigenvalues, decompose A as

A = A1 + A2

where

A1 = (1 + x)Λ1/2φmφ
∗
mΛ1/2 and A2 = −xΛ

The matrix A1 has only one nonzero eigenvalue, (1 + x)φ∗mΛφm. The eigenvalues of A2 are

−xλM (Λ) ≤ −xλM−1(Λ) ≤ · · · ≤ −xλ1(Λ)

where λ1(Λ) ≤ λ2(Λ) ≤ · · · ≤ λM (Λ) are the diagonal elements of Λ (ordered) 1. The second largest

eigenvalue of A thus satisfies [20]

λM−1(A) ≤


λM−1(A1) + λM (A2)

λM (A1) + λM−1(A2)
(2.25)

=


0− xλ1

φ
∗
mΛφm − xλ2

(2.26)

This means that λM−1(A) ≤ −xλ1 < 0. So the second largest eigenvalue is negative. The largest

eigenvalue, however, is positive (otherwise A would be negative definite or singular, neither of which

is the case). This means that (2.24) has exactly one positive root

λ =
1

λM (A)

Henceforth, we drop the dependence upon the matrix A as it is understood. From above, we can

express R̃ as

det(R̃) = −xM−1((jω + β)− 1
λM

)
∏M−1

i=1 ((jω + β)− 1
λi

)

1In general, the M eigenvalues of a size M matrix K are written as λ1(K) ≤ λ2(K) ≤ · · · ≤ λM (K). We will drop

the dependence on K for notational convenience whenever it is understood.

18



Deriving the CDF of SINR With the above factorization of det(R̃), we can proceed to evaluate

the probability P (λ > 0) in (2.15) and hence the CDF of the SINR can be written as,

P (S > 0) = − 1
xM−1

1
2π det(R)

∫
e
−(jω+β)x

ρ

(jω + β)((jω + β)− 1
λM

)
∏M−1

i=1 ((jω + β)− 1
λi

)
dω (2.27)

Using partial fraction expansion, we can write

1

(jω + β)(jω + β − 1
λM

)
∏M−1

i=1 (jω + β − 1
λi

)
=

αM

jω + β − 1
λM

+
M−1∑
i=1

αi

jω + β − 1
λi

+
α0

jω + β

The term αM

jω+β− 1
λM

is the only one that contributes to the integral in (2.27) (the other terms integrate

to zero since the poles are outside the contour of integration), and so we only need to calculate αM

αM =
1

(jω + β)
∏M−1

i=1 (jω + β − 1
λi

)

∣∣∣∣∣
jω+β= 1

λM

(2.28)

=
1

1
λM

∏M−1
i=1 ( 1

λM
− 1

λi
)

(2.29)

and

P (S > 0) =
1

2π det(R)
1

xM−1

∫
αMe

−(jω+β)x
ρ

1
λM

− (jω + β)
dω (2.30)

=
1

det(R)
αM

xM−1
e
− 1

ρ
x

λM (2.31)

This represents the probability P (SINRi,m > x). Thus, the CDF of the SINR is given by

F (x) = 1− 1
det(R)

αM

xM−1
e
− 1

ρ
x

λM

Or, upon replacing αM by its value obtained in (2.29),

F (x) = 1− 1
det(R)λM

∏M−1
i=1

λiλM
x(λi−λM )e

− 1
ρ

x
λM (2.32)

We would like to emphasize that the eigenvalues of A, λi, are functions of x.

Probability Density Function of SINR

To find the pdf of the SINR, we simply evaluate the derivative dF (x)
dx . To do this, we first need to

find the derivative of the eigenvalues dλi
dx . So let qi be the eigenvector associated with λi. Then, we
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can write

λi = ‖qi‖2
A

= q∗i Λ
1/2(φmφ

∗
m − x

∑
k 6=m

φkφ
∗
k)Λ

1/2qi

where we used the notation ‖qi‖2
A = q∗i Aqi. We can use this to show that

dλi

dx
= ‖qi‖2

B (2.33)

where B = Λ1/2(φmφ
∗
m − I)Λ1/2. We can in turn use this result to show that

d

dx

(
λiλM

x(λi − λM )

)
=

λ2
M‖qi‖2

C − λ2
i ‖qM‖2

C

x2(λi − λM )2
(2.34)

where C = Λ1/2φmφ
∗
mΛ1/2.From (2.32)–(2.34), we can show that the SINR pdf is given by

f(x) = 1
det(R)e

− 1
ρ

x
λM
∏M−1

i=1
λiλM

x(λi−λM )

{
1
ρ
‖qM‖2C

λM
− ‖qM‖2

B −
∑M

i=1
1
λi

λ2
M‖qi‖2C−λ2

i ‖qM‖2C
x(λi−λM )

}
(2.35)

Scaling Law of the Maximum SINR

Lemma 2.2: Let F (x) denote the CDF of SINRi,m given by (2.32) and let f(x) denote the associated

pdf (given by (2.35)). Then

lim
x→∞

1− F (x)
f(x)

=
ρ

‖φm‖2
Λ−1

Proof: See Appendix A for the proof.

Note that in the absence of spatial correlation, Λ = I, and the above limit reduces to

lim
x→∞

1− F (x)
f(x)

=
ρ

‖φm‖2
= ρ

which is the scaling obtained in [26].

Using extreme value theory, and the lemma above, we know that max
1≤i≤n

SINRi,m behaves like

ρ

‖φm‖2Λ−1

log n. Upon substituting this in (2.9) and noting that the φ’s are identically distributed, we

can write

RRBF =
M∑

m=1

Eφm log

(
1 +

P

M‖φm‖2
Λ−1

log n + o(log log n)

)
+ o(1)

=
M∑

m=1

Eφm log

(
P

M‖φm‖2
Λ−1

log n

)
+ o(1)

= M log log n + M log
P

M
+ MEφm log

(
1

‖φm‖2
Λ−1

)
+ o(1). (2.36)
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It thus remains to calculate the expectation in (2.36) for which we need to derive the CDF of 1
‖φm‖2Λ−1

.

Calculating the CDF of 1
‖φ‖2

Λ−1

Lemma 2.3: The CDF of y = 1
‖φ‖2

Λ−1
is given by

G(x) = Pr( 1
‖φ‖2

Λ−1
< x) = 1−

∑
i ηi

(
1
x −

1
λi(Λ)

)M−1
u
(
1− x

λi(Λ)

)
where ηi = 1Q

j 6=i(
1

λj(Λ)
− 1

λi(Λ)
)
.

Proof: See Appendix B for the proof.

Calculating the sum-rate

Now all we need to do to calculate the sum-rate in (2.36) is to compute E log( 1
‖φ‖2

Λ−1
) where the

distribution of 1
‖φ‖2

Λ−1
is given in the above Lemma. We employ integration by parts and use the

CDF to calculate the expectation as follows

E

(
log(

1
‖φ‖2

Λ−1

)

)
= G(y) log(y)|λM (Λ)

λ1(Λ) −
∫ λM (Λ)

λ1(Λ)
G(y)

1
y
dy

= G(λM (Λ)) log(λM (Λ))−
∫ λM (Λ)

λ1(Λ)
G(y)

1
y
dy

= log(λM (Λ))−
∫ λM (Λ)

λ1(Λ)

1
y

+
M∑
i=1

ηi

∫ λi(Λ)

λ1(Λ)
(
1
y
− 1

λi
)M−1 1

y
dy

= log(λ1(Λ)) +
M∑
i=1

ηi

∫ λi(Λ)

λ1(Λ)
(
1
y
− 1

λi
)M−1 1

y
dy

= log(λ1(Λ)) +
M∑
i=1

ηi

M−1∑
k=0

∫ λi(Λ)

λ1(Λ)

1
yk+1

(
−1
λi

)M−1−kdy

= log(λ1(Λ)) +
M∑
i=1

ηi log(
λi

λ1
)

M−1∑
k=1

∫ λi(Λ)

λ1(Λ)

1
yk+1

(
−1
λi

)M−1−kdy

= log(λ1(Λ)) +
M∑
i=1

ηi log(
λi

λ1
)

M−1∑
k=1

1
k + 2

(
−1
λi

)M−1−k 1
yk+2

∣∣∣∣λi(Λ)

λ1(Λ)

Therefore the sum-rate of beamforming can be written as,

RRBF = M log log n + M log
P

M
+ M log λ1(Λ) +

M

M∑
i=1

ηi log
(

λi

λ1

)M−1∑
k=1

1
k + 2

(
−1
λi

)M−1−k

{
1

(λi(Λ))k+2
− 1

(λ1(Λ))k+2

}
+ o(1).(2.37)
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2.3.3 Sum-Rate of Deterministic Beamforming

Here we consider the case where the beamforming matrix Φ is fixed over all channel uses. In this

case, we can use the same analysis as we done in the case of random beamforming with the only

exception that we do not need to take expectation over the beamforming matrix. Therefore, we may

write the sum-rate for the deterministic beamforming matrix Φ as,

RBF−D = M log log n + M log
P

M
+

M∑
i=1

log
(

1
φ∗i U

∗Λ−1Uφi

)
+ o(1) (2.38)

where U∗Λ−1U is the eigenvalue decomposition of the correlation matrix R−1.

One interesting special case would be the case where the Uφi’s are the columns of the identity

matrix. In this case, the beamforming matrix is in fact equal to U∗ and the argument in the logarithm

would therefore reduce to λm. Thus, when n is large, the sum-rate reduces to 2.1.

Keeping in mind that the eigenvalues of Λ are such that
∑M

i=1 λi(Λ) = M , it is clear that the

geometric mean of λi’s would be less than 1. Eq. (??) in fact proves Lemma 2.1. It should be also

mentioned that this result is obtained in [21] for M = 2.

2.3.4 Sum-Rate of Random Beamforming with Precoding

We can consider a generalization of the random beamforming by using precoding. In this scheme

the new beamforming matrix is
√

αA−1/2Φ where A is a positive definite matrix and α is just a

normalization factor to adjust the transmit power. Again similar to Section 2.3, we can state that α

has to be less than M
Tr(A−1)

.

In order to analyze the sum-rate, we can follow along the same line as what we did for the analysis

of the random beamforming with the only exception that the covariance matrix of the channel is

replaced with R = A∗−1/2RA−1/2. Therefore the same result holds for this case with the new

covariance matrix R̃. Here is the main result.

Considering the random beamforming scheduling with beamforming matrix
√

αA−1/2Φ where Φ

is a random unitary matrix, the sum-rate of this scheme can be written as

RBF−Prec = M log log n + M log
P

M
+

M∑
i=1

E log
(

1 +
Tr(Λ−1)

M

P

φ∗i U
∗Λ−1Uφi

)
+ o(1). (2.39)
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for large n, where U∗Λ−1U represents the eigenvalue decomposition of R−1.

2.4 Simulation Results

In this section we present the simulation results for the sum-rate of beamforming schemes and DPC.

In the first example, we consider a system with two transmit antennas, i.e., M = 2, and 100 users.

The covariance matrix is assumed to be like

R2 =

1 γ

γ 1

 (2.40)

where γ is the correlation. Fig. 1 shows the sum-rate loss (relative to the case of no correlation)

versus the correlation coefficient γ for DPC, RBF and RBF with whitening. It is clear that RBF

outperforms the one with channel whitening. Fig. 2 also shows the actual sum-rate for such a setting

for RBF and RBF with whitening. Fig. 3 shows the sum-rate loss for the there antenna case M = 3

where the covariance matrix is now given by

R3 =


1 γ γ2

γ 1 γ

γ2 γ 1

 (2.41)

where γ is changing from 0 to 0.8. In Fig. 4, we show the sum-rate versus the number of users in

system with M = 2, γ = 0.5, P = 10 for beamforming scheme and it is compared to the case of

having no correlation.

2.5 Conclusion

This chapter considers the effect of spatial correlation on various multiuser scheduling schemes for

MIMO broadcast channels. Specifically, we considered dirty paper coding and various (random,

deterministic, and channel whitening) beamforming schemes. When the channel is i.i.d. and for

large number of users, the sum rate of all these techniques exhibits the same scaling, namely, as

M log log n + M log P
M + o(1) where n is the number of users, M is the number of transmit antennas

and P is the average SNR.
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Figure 2.1: Sum-rate loss versus the correlation factor γ for a system with M = 2 and n = 100.

Figure 2.2: Sum-rate versus the correlation factor γ for a system with M = 2, P = 10, and n = 100.
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Figure 2.3: Sum-rate loss versus the correlation factor γ for a system with M = 3 and n = 100.

Figure 2.4: Sum-rate versus the number of users in a system with M = 2, P = 10, and γ = 0.5
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In the presence of a correlation between transmit antennas, the channel matrix has a covariance

matrix R which is assumed to be non-singular and Tr(R) = M . In this case, the sum-rate of DPC

and beamforming schemes will be different. It turns out that in these case, the sum-rate can be

written as M log log n + M log P
M + M log c + o(1) where c < 1 is a constant that only depends on

the scheduling scheme and the covariance matrix R. For DPC, c is just the geometric mean of the

eigenvalues of R. We further obtain c for different beamforming schemes; For example, for the case of

beamforming with channel whitening, c will be equal to the harmonic mean of the eigenvalues of R.

It is worth mentioning, numerical results suggest that sum-rate of random beamforming outperforms

that of the random beamforming with channel whitening 2.

2.6 Appendix A: Proof of Lemma 2.2

From (2.32) and (2.35), we can write

1− F (x)
f(x)

=
λM

1
ρ
‖qM‖2C

λM
− ‖qM‖2

B −
∑M−1

i=1
1
λi

λ2
M‖qi‖2C−λ2

i ‖qM‖2C
x(λi−λM )

(2.42)

To evaluate the limit of this expression, we need to investigate the behavior of the eigenvalues and

eigenvectors of A as x →∞. Now from the bound (2.26), we deduce that

lim
x→∞

λi = −∞ for all i 6= m

We now have to evaluate the behavior of the maximum of eigenvalue as x tends to infinity. This

is done by using the Rayleigh quotient for the maximum eigenvalue as,

λM = max
‖u‖2=1

u∗Au = max
‖u‖2=1

u∗(Λ1/2φmφ
∗
mΛ1/2 − xΛ1/2

∑
m6=i

φiφ
∗
i )u (2.43)

The vector u that maximizes λM is the associated eigenvector. Since any vector u of dimension M

can be written as u =
∑M

i=1 αiΛ−1/2φi, we can write ‖Au‖2 as

‖Au‖2 = u∗Au = u∗

αmΛ1/2φm − x
∑
i6=m

αiΛ1/2φi

 = α2
m − x

∑
i6=m

α2
i (2.44)

2Channel whitening is like zero forcing in that it takes care of the worst eigenvalue and thus would result in a big

waste of power.
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where we used the fact that the φi’s are orthonormal vectors. Now as x tends to infinity, ‖Au‖2

could go to −∞ and is maximized when
∑

i6=m α2
i is equal to zero (i.e., αi = 0 for i 6= m and as a

result αm = 1q
‖φm‖2Λ−1

). We have thus proved that

lim
x→∞

qM = lim
x→∞

u =
Λ−1/2φm√
‖φm‖2

Λ−1

(2.45)

and

lim
x→∞

λM =
1

‖φm‖2
Λ−1

Using the above, it is easy to verify that

lim
x→∞

1
λi

λ2
M‖qi‖2

C

x(λi − λM )
= 0

and

lim
x→∞

− 1
λi

λ2
i ‖qM‖2

C

x(λi − λM )
= lim

x→∞
−

λi‖qM‖2
C

x(λi − λM )
= 0

From (2.45) and the defining expression of B, we also deduce that

lim
x→∞

‖qM‖2
B =

1
‖φm‖2

Λ−1

φ
∗
m(φmφ

∗
m − I)φm = 0

Thus, the only nonzero limit in the denominator of (2.42) is 1
ρ
‖qm‖2C

λM
and

lim
x→∞

1− F (x)
f(x)

=
λ2

M
1
ρ‖qm‖2

C

=
ρ

‖φm‖2
Λ−1

(2.46)

2.7 Appendix B: Proof of Lemma 2.3

Consider the inequality

y =
1

‖φ‖2
Λ−1

> x

which can be equivalently written as 1−x‖φ‖2
Λ−1 > 0. As we did to derive the SINR CDF above, we

use the unit-step representation

u(1− x‖φ‖2
Λ−1) =

1
2π

∫
e(1−x‖φ‖2

Λ−1 )(jω1+β1)

jω1 + β1
dω1

Now the pdf of φ is

p(φ) =
Γ(M)
πM

δ(‖φ‖2 − 1)
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Alternatively, following the approach of [5], we can use an integral representation for the Dirac delta

p(φ) =
Γ(M)
πM

1
2π

∫
dω2e

jω2(‖φ‖2−1)

So the probability p( 1
‖φ‖2

Λ−1
> x) = p(1− x‖φ‖2

Λ−1 > 0) is given by

p(
1

‖φ‖2
Λ−1

> x) =
Γ(M)
4πM+2

∫
dω1

∫
dω2

∫
dφ

e(jω1+β1)(1−x‖φ‖2
Λ−1 )ejω2(‖φ‖2−1)

jω1 + β1

=
Γ(M)
4πM+2

∫
dω1

e(jω1+β1)

jω1 + β1

∫
dω2e

−jω2

∫
dφe−φ∗(x(jω1+1)Λ−1−jω2I)φ

=
Γ(M)
4πM+2

∫
dω1

e(jω1+β1)

jω1 + β1

∫
dω2e

−jω2
1

det (x(jω1 + β1)Λ−1 − jω2I)

Now use partial fraction expansion to show that

1
det (x(jω1 + β1)Λ−1 − jω2I)

=
1∏M

i=1

(
x

λi(Λ)(jω1 + β1)− jω2

) (2.47)

=
1

xM−1

1
(jω1 + β1)M−1

M∑
i=1

ηi
x

λi(Λ)(jω1 + β1)− jω2
(2.48)

where ηi = 1Q
j 6=i(

1
λj(Λ)

− 1
λi(Λ)

)
. We thus have

p(
1

‖φ‖2
Λ−1

> x) =
Γ(M)
4π2

1
xM−1

∫
dω1

ejω1+β1

(jω1 + β1)M

∑
i

∫
dω2

ηi
x

λi(Λ)(jω1 + β1)− jω2
e−jω2(2.49)

=
Γ(M)

2π

1
xM−1

∑
i

ηi

∫
dω1

e
(jω1+β1)(1− x

λi(Λ)
)

(jω1 + β1)M
(2.50)

or after some straight-forward calculations,

p(
1

‖φ‖2
Λ−1

> x) =
∑

i

ηi

(
1
x
− 1

λi(Λ)

)M−1

u

(
1− x

λi(Λ)

)
Alternatively, the CDF, G(x) = p( 1

‖φ‖2
Λ−1

< x) is given by

G(x) = 1−
∑

i

ηi

(
1
x
− 1

λi(Λ)

)M−1

u

(
1− x

λi(Λ)

)
which completes the proof of the Lemma.
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Chapter 3

Opportunistic Beamforming with

Precoding

In the previous chapter, we showed that correlation always results in a hit on the various broadcast

techniques. However, the hit varies from one technique to another and the sum-rate of random

beamforming does not anymore match that of DPC for large number of users (in direct contrast to

the white channel case). The chapter also showed that a technique like zero-forcing which attempts

to counter the effect of correlation performs even worse than random beamforming.

In this chapter, we explore other precoding techniques that in contrast to zero forcing, can actually

improve the performance of random beamforming. Thus, after revisiting random beamforming with

percoding, we derive the optimum precoding that minimizes the hit on the sum rate of random

beamforming. The precoding matrix arrived is obtained by solving M nonlinear equations in M

unknowns. Thus, we also introduce 3 suboptimum precoding techniques, two of which are intuitively

justified (namely zero forcing and MMSE precoding), and a third that minimizes an upper bound

on the hit and gives the precoding matrix in closed form. Simulations are presented at the end of

the chapter.
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3.1 Beamforming with Precoding

3.2 Random Beamforming with Optimum Precoding

To counter the effect of correlation, we introduce beamforming with precoding. Specifically, instead

of transmitting the signal (1.4), we transmit

αAS(t) = αA
M∑

m=1

φm(t)sm(t), t = 1, . . . , T (3.1)

where the constant α is chosen to maintain a power constraint of P and A is the desired precoding

matrix. Specifically we should have

α2E{S∗A∗AS} ≤ P

i.e. α2Tr(A∗AE[SS∗])} ≤ P , or as E[SS∗] = P
M I, it follows that

α ≤

√
M

Tr(A∗A)

Lets consider the input/output equation for the new choice of S(t),

Yi = αHiAS(t) + Wi

Random beamforming over this channel is nothing but the familiar random beamforming over the

effective channel

H̃i = αHiA

which exhibits correlation of α2R̃ = α2A∗RA. From (2.36), we know that the sum-rate capacity

scales as

RPC = M log log n + M log
P

M
+ ME log

1
‖φm‖2

1
α2 R̃

−1

= M log log n + M log
P

M
+ M log

M

Tr(A∗A)
+ E log

1
‖φm‖2

R̃
−1

(3.2)

where the last equality follows from the fact that the choice

α2 =
M

Tr(A∗A)
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will maximize the sum-rate. Alternatively, we can write

RPC = M log log n + M log
P

M
− h(A) (3.3)

where h(A) is the hit incurred by using a general precoding matrix A

h(A) = M log Tr(A∗A)
M + ME log ‖φm‖2

R̃
−1 (3.4)

Finding the general precoding matrix A that minimizes the hit is difficult. The following lemma

shows that the optimum A has a special structure.

Lemma: The optimum precoding matrix Aopt can be written as

Aopt = QAoptDAopt

where QAopt is an orthonormal matrix and DAopt is a diagonal matrix with positive entries.

Proof : Consider the general precoding hit h(A) in (3.4) and consider the eigenvalue decompo-

sition of R̃ = Q̃Λ̃Q̃
∗
. It is easy to see that

‖φm‖2

R̃
−1 = ‖φm‖2

Q̃Λ̃−1Q̃
∗

= ‖Q̃φm‖2
Λ̃−1 = ‖φm‖2

Λ̃−1 (3.5)

where the last equality follows from the fact that φm is an isotropic vector and hence is invariant

under multiplication by an orthonormal matrix Q. With this in mind, the hit can be equivalently

written as

h(A) = M log
Tr(A∗A)

M
+ ME log ‖φm‖2

Λ̃−1

Now the first term of the hit depends on Tr(A∗A) and hence Tr(AA∗). The second term depends

on the eigenvalues of R̃, i.e. of A∗RA, or equivalently the eigenvalues of RAA∗ as it coincides with

the eigenvalues of A∗RA. Thus both terms of the hit are determined by AA∗. One choice of the

optimum matrix Aopt is thus

Aopt = QAoptDAopt

31



where QAopt is orthonormal and DAopt is diagonal with positive entries. This proves the lemma.

3.2.1 Determining Qopt

An intuitive choice however is to set QAopt to QR of the channel autocorrelation matrix (as this will

diagonalize this matrix). In the following, we show that this choice is actually optimum. To this

end, let Πl be a diagonal matrix with all 1′s on the diagonal except for a −1 at the lth entry and

define Â = QΠlD. This induces the effective correlation R̃l. The hit that results by using either of

the precoding matrices A or Âl is the same. To see this, note that

Tr(A∗A) = Tr(Â
∗
l Âl) = Tr(D)

Moreover,

‖φ‖2

R̃
−1
l

= ‖φ‖2

D− 1
2 ΠlQ

∗RQΠlD
− 1

2
= ‖ΠlD− 1

2 φ‖2
Q∗RQ (3.6)

Now the distribution of φ is unchanged by the changing the sign of the lth entry. Hence,

E log ‖φ‖2

R̃
−1
l

= E log ‖D− 1
2 φ‖2

QRQ∗ = E log ‖φ‖2

R̃
−1 (3.7)

Thus, both terms of the hits are the same and

h(Ã) = h(A)

Now note that

h(A) + h(Ã)
2

= M log
Tr(D)

M
+

M

2
E log ‖φ‖2

R̃
−1 +

M

2
E log ‖φ‖2

R̃
−1
l

≥ M log
Tr(D)

M
+ ME log ‖φ‖2

( 1
2
R̃+ 1

2
R̃l)−1

= M log
Tr(D)

M
+ ME log ‖D− 1

2 φ‖2
( 1
2
Q∗RQ+ 1

2
ΠlQ∗R−1QΠl)−1

Or as h(Ã) = h(A),

h(A) = M log
Tr(D)

M
+

M

2
E log ‖D− 1

2 φ‖2
( 1
2
Q∗RQ+ 1

2
ΠlQ∗R−1QΠl)−1
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Note that the weight matrix 1
2Q

∗RQ+ 1
2ΠlQ∗RQΠl has entries equal to those of Q∗RQ except the

off diagonals lying on the lth column or lth row which are zero. What the last equation says is that

nulling the off diagonal elements of Q∗RQ at the lth row and lth column can only reduce the hit.

This argument can be repeated for l = 1, . . . ,M. Hence, nulling the off diagonal entries of QRQ∗

can only reduce the hit. Thus, QRQ∗ should be diagonal, i.e. Qopt = QR.

3.2.2 Determining Dopt

We have so far established that Aopt = QRD
1
2
opt where Dopt is a diagonal matrix to be determined.

The hit in this case is given by

h(Aopt) = M log
Tr(Dopt)

M
+ E log ‖φ‖2

D−1
optΛ

−1

Now, taking the derivative with respect to ith diagonal di element of Dopt and setting it to zero, we

obtain

1
di

E

 1
diλi

|φ(i)|2

‖φ‖2
D−1

optΛ
−1

 =
1

Tr(Dopt)
(3.8)

where in arriving at (3.8), we exchanged the differentiation and expectation operations. Thus, we

have a set of M implicit equations for d1, d2, . . . , dM . We can solve these equations numerically

provided we first obtain the expectation of the random variable Z1 that appears in (3.8). In the

Appendix, we evaluate the CDF of the more general random variable Z for diagonal matrices B and

C. By setting B = diag(0, . . . , 1
diλi

, . . . , 0) and C = D−1Λ−1, we obtain the CDF of Z1. Since the

support of Z1 is over the interval (0, 1), it is expectation is given by

E[Z1] =
∫ 1

0
(1− FZ1(z1))dz1

3.3 Approximate Precoding Matrcies

In the previous section, we obtained the optimum precoding matrix which we showed to be of the

form

Aopt = QRD
1
2
opt
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To obtain Dopt, we need to solve M nonlinear equations in M unknowns. In the following, we derive

3 approximate precoding matrices, two of which are intuitively justified and the third is obtained by

minimizing an upper bound on the hit.

3.3.1 Random Beamforming with Zero Forcing

A natural choice of the precoding matrix is one which whitens the channel, i.e.

AZF = QRΛ
− 1

2
R

From (3.4), this zero-forcing choice of the precoding matrix results in the hit

hZF = M log
Tr(R−1)

M

Comparing this with the sumrate of DPC, we note that the hit in the DPC case is equal to geometric

mean of the eigenvalues, while it is equal to the harmonic mean in the channel whitening case, making

the latter inferior to DPC.

3.3.2 Random Beamforming with MMSE Precoding

The zero-focing solution invests most of the input power taking care of the minimum eigenvalue

which explains its inferior behavior. So we consider here the MMSE solution. Specifically, consider

the choice

AMMSE = QR(Λ + βI)−
1
2

for some constant β which we now determine. For this choice of A, the sum-rate hit is given by

hMMSE = M log
Tr(Λ + βI)−1

M
+ ME log

(
1 + β‖Φm‖2

Λ−1

)
Upon setting the first derivative of the hit to zero, we obtain the following implicit equation for β

Tr(Λ + β∗I)−2

Tr(Λ + β∗I)−1
= E

 1
β + 1

‖Φm‖2
Λ−1

 (3.9)

where in arriving at this equation, we interchanged the expectation and differentiation operations.

To solve this implicit equation, we need to evaluate the expectation and hence the CDF of 1
‖φm‖2

Λ−1

.
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In the Appendix, we evaluate the CDF of the more general random variable

Z =
‖φ‖2

B

‖φ‖2
C

(3.10)

for diagonal matrices B and C which for the special case of B = I and C = Λ−1 reads

G(x) = 1−
∑

i ηi

(
1
x −

1
λi

)M−1
u
(
1− x

λi

)
where ηi = 1Q

j 6=i
1

λj
− 1

λi

and λM ≥ · · · ≥ λ1 > 0 are the eigenvalues of R and where u(x) is the unit

step function. Thus, the moment in (3.9) is given by

E

 1
β + 1

‖Φm‖2
Λ−1

 =
1

1 + λM
+
∫ λM

λ1

1
(β + x)2

G(x)dx

3.3.3 An approximate Precoding Matrix

In the previous section, we obtained an approximate precoding matrix (up to an orthogonal transfor-

mation). The problem with the solution obtained is that we need to simultaneously solve M nonlinear

equations in the M diagonal unknowns. We derive in this section an approximate precoding that is

1) explicit and 2) does not assume that QAopt
= QR but actually proves it.

The difficult part in minimizing the hit is the term that depends on φm. So we rewrite this hit as

h(A) = M log Tr(A∗A) + ME log ‖φ‖2
(A∗RA)−1 (3.11)

= M log Tr(A∗A) + M log Tr((A∗RA)−1) + ME log ‖φ‖2
(A∗RA)−1

Tr(A∗RA)−1

(3.12)

We now minimize the sum of the first two terms of the hit and ignore the 3rd term. There are two

justifications for doing so

1. The first two terms constitute an upper bound on the hit. To see this, note that

log ‖φ‖2
(A∗RA)−1

Tr(A∗RA)−1

= E log ‖φ‖2
(Λ̃)−1

Tr(Λ̃−1)

(3.13)

≤ log ‖φ‖2 Tr(Λ̃−1)
Tr(Λ̃−1)

= 0 (3.14)

where Λ̃ is the diagonal matrix of eigenvalues of A∗RA.
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Figure 3.1: Comparison between the exact and approximation for M=2 (left) and M=3 (right).

2. One can consider the term ‖φ‖2
(Λ̃)−1

Tr(Λ̃−1)

as the squared dot product of two unit norm vectors φ

and

c =
diag(Λ̃)−

1
2√

Tr(Λ̃−1)

This squared dot product can be approximated as the squared dot product of two uniformly

distributed unit norm vectors υ which has a CDF [32]

F (υ) = 1− (1− υ)M−1 υ ∈ [0, 1]

Hence, we can approximate the expectation in (3.12) as

E log ‖φ‖2
(Λ̃)−1

Tr(Λ̃−1)

' E[log υ] (3.15)

= −
M−1∑
m=1

1
m

(3.16)

Figure 3.1 plots the two sides of (3.15) for various values of the correlation coefficient α and

shows that they are almost the same.

Thus up to an almost constant term, the hit is given by

h(AAppx) = M log
Tr(A∗A)

M
+ log Tr(A∗RA)−1
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Let’s try to minimize the hit by designing A properly. Taking the first derivative with respect to A

and setting the result to zero yields

∂Tr(A∗A)
∂A

= 2A− 2RA(A∗RA)−2 (3.17)

2
Tr(A∗A)

A =
2

Tr(A∗RA)−2
RA(A∗RA)−1

Alternatively, we can write

AA∗RAA∗ =
Tr(A∗A)

Tr(A∗RA)−1
I (3.18)

This shows that AA∗ is a left and a right inverse of R. So, using the eigenvalue decomposition,

R = QRΛRQ∗
R, we can show that the choice

AAppx = QRΛ−1/4
R

satisfies (3.18). The resulting hit for this choice of precoding is given by

hAppx = M log
Tr(Λ− 1

2 )
M

+ M log ‖φ‖2

Λ− 1
2

3.4 Simulations

We consider a broadcast scenario with a base station having M = 2 and M = 3 antennas. The

channels exhibit the following correlations respectively 0 ≤ γ < 1

R2 =

 1 γ

γ 1

 R3 =


1 γ γ2

γ 1 γ

γ2 γ 1


In what follows, we evaluate the scaling of RBF, zero-forcing RBF, MMSE, diagonal and approximate

RBF precoding for different channel correlation strength. Figures (3.2)-(3.6) clearly show that RBF

incurs a hit in the presence of correlation. They compare the sum-rate capacity against the number

of users in the presence of spatial correlation between the transmit antennas for a system with M = 2

and M = 3 transmit antennas, a correlation factor (γ) of 0.5 and 0.7 respectively and a power (P )
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Figure 3.2: Sum-rate versus the number of users in a system with M = 2, P = 10 and γ = 0.5

of 10. Both theoretical and simulation results show that RBF with precoding (diagonal, MMSE and

approximate) performs better than RFB with zero forcing and thus optimizes the sum-rate capacity.

Figures (3.7)-(3.11) compares the sum-rate loss against the channel correlation γ for M = 2 and

M = 3 transmit antennas with n = 400 and n = 100 users respectively. Both simulation and

theoretical results show that RBF with diagonal, MMSE and approximate precoding outperforms

RBF especially for highly correlated channels, while zero-forcing is inferior to RBF. Figure (3.12)

shows the CDF of Z for general diagonal matrices A and B.

3.5 Conclusion

In this chapter, we considered random beamforming in a spatially correlated regime. While RFB

matches DPC for uncorrelated channels (in the large number of users regime), it incurs an SNR hit

in the presence of correlation. We suggested precoding techniques as a way to counter the effect of

correlation. Specifically, it was shown that RBF with diagonal and MMSE precoding outperforms
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Figure 3.3: Sum-rate versus the number of users in a system with M = 3, P = 10 and γ = 0.7

Figure 3.4: Theoretical sum-rate versus the number of users in a system with M = 2 and γ = 0.5
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Figure 3.5: Theoretical sum-rate versus the number of users in a system with M = 3 and γ = 0.7

Figure 3.6: Theoretical and experimental sum-rate versus the number of users in a system with M

= 2, P = 10, γ = 0.5 (left) and M = 3, P = 10, γ = 0.7 (right).
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Figure 3.7: Sum-rate loss versus correlation factor γ in a system with M = 2, P=10 and n=400

Figure 3.8: Sum-rate loss versus correlation factor γ in a system with M = 3, P=10 and n=100
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Figure 3.9: Theoretical sum-rate loss versus correlation factor γ in a system with M = 2

Figure 3.10: Theoretical sum-rate loss versus correlation factor γ in a system with M = 3
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Figure 3.11: Theoretical and experimental sum-rate loss versus correlation factor γ in a system with

M = 2, P=10, n=400 (left) and M = 3, P=10, n=100 (right).

Figure 3.12: CDF of Z for general diagonal matrices A and B.
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pure RBF and RBF with zero forcing. We also showed that diagonal precoding did not yield much

optimization as compared with MMSE and approximate precoding. Although diagonal and MMSE

precoding scaled well in the presence of channel correlation, we introduced a less computational

and rather a direct and approximate technique (approximate precoding) that closely matches the

performance of diagonal and MMSE precoding techniques. Simulation and theoretical results show

that RBF with diagonal, MMSE and approximate precoding optimized the sum-rate capacity and

reduced the SNR hit especially in a very highly correlated channel and hence were able to reduce

gap between RBF and DPC.

3.6 Appendix: Calculating the CDF of Z

For convenience of presentation, we evaluate in this section the CDF of a general quantity

Z =
‖φ‖2

A

‖φ‖2
B

where A and B are diagonal matrices. To this end, note that the inequality Z ≤ x can be written as

‖φm‖2
xB−A ≥ 0

The CDF is then given by

P{Z ≤ x} =
∫
‖φm‖2xB−A≥0

p(φ)dφ =
∫

p(φ)u(‖φm‖2
xB−A)dφ (3.19)

where p(φ) is the pdf of φ defined in (3.9)and u(x) is the step function. This integral is very difficult

to calculate due the inequality constraint (the unit step function) and due to the delta function. To

go around this, we use the following unit step representation [5]

u(x) =
1
2π

∫ ∞

−∞

ex(jω1+β1)

jω1 + β

which is valid for any β1 > 0. We can thus write

u(‖φm‖2
xB−A) =

1
2π

∫ ∞

−∞

e(‖φm‖2xB−A)(jω1+β1)

jω1 + β1
dω1

We can also replace the delta function with a similar integral representation

p(φ) =
Γ(M)
πM

1
2π

∫ ∞

−∞
ejω2(‖φ‖2−1)dω2
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We thus have the following integral representation of the CDF of Z

P{r ≤ x} =
Γ(M)
4πM+2

∫ ∞

−∞
dω1

1
jω1 + β1

∫ ∞

−∞
dω2e

−jω2∫
dφe−φ∗((A−xB)(jω1+β1)−jω2I)φ

By inspecting the inner integral, we note that it is similar to the Gaussian density integral. Specifi-

cally, we have

1
πM

∫
dφe−φ∗((A−xB)(jω1+β1)−jω2I)φ =

1
det ((A− xB)(jω1 + 1)− jω2I)

This allows us to write

P{Z ≤ x} =
Γ(M)
4πM+2

∫
dω1

1
jω1 + β1∫

dω2
e−jω2

det ((jω1 + β1)(A− xB)− jω2I)

We turn our attention now to the integral with respect to ω2. To evaluate this integral, we use partial

fraction expansion to represent the determinant as

1
det ((jω1 + β1)(A− xB)− jω2I)

(3.20)

=
1∏M

i=1 ((ai − bix)(jω1 + β1)− jω2)
(3.21)

=
1

(jω1 + β1)M−1

M∑
i=1

ηi

((ai − bix)(jω1 + β1)− jω2)
(3.22)

where

ηi =
1∏

k 6=i((ak − ai)− (bk − bi)x)

This expansion is valid assuming that (ak − ai)2 + (bk − bi)2 6= 0. We can now residue theory to

evaluate the integral with respect to ω2 as

1
2π

∫
dω2

e−jω2

det ((jω1 + β1)(A− xB)− jω2I)
=

M∑
i=1

ηie
(ai−bix)(jω1+β1)u(ai − bix)
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We can thus write

P{Z ≤ x} =
Γ(M)
4πM+2

∫ ∞

−∞
dω1

1
(jω1 + β1)M

M∑
i=1

ηie
(ai−bix)(jω1+β1)u(ai − bix)

We can now use residue theory to show that

P{Z ≤ x} =
Γ(M)
4πM+2

M∑
i=1

ηiu(ai − bix)

∫ ∞

−∞
dω1

e(jω1+β1)(ai−bix)

(jω1 + β1)M

=
M∑
i=1

ηi(ai − bix)M−1u(ai − bix)u(ai − bix)

=
M∑
i=1

ηi(−ai + bix)M−1u(−ai + bix)
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Chapter 4

Conclusions, Recommendations,

Outcomes, and Publications

4.1 Conclusions

Broadcast channels are getting increased attention as downlink scheduling is a major bottleneck for

current wideband wireless systems. It is thus important to devise new scheduling techniques and

study the performance of existing ones under various non-idealities.

In this report, we considered the effect of spatial correlation on various multiuser scheduling

schemes for MIMO broadcast channels. Specifically, we considered dirty paper coding and various

(random, deterministic, and channel whitening) beamforming schemes. When the channel is i.i.d.

and for large number of users, the sum rate of all these techniques exhibits the same scaling, namely,

as M log log n+M log P
M +o(1) where n is the number of users, M is the number of transmit antennas

and P is the average SNR.

In the presence of a correlation between transmit antennas, the channel matrix has a covariance

matrix R which is assumed to be non-singular and Tr(R) = M . In this case, the sum-rate of DPC

and beamforming schemes will be different. It turns out that in this case, the sum-rate can be

written as M log log n + M log P
M + M log c + o(1) where c < 1 is a constant that only depends on

the scheduling scheme and the covariance matrix R.
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Our theoretical results and simulations demonstrate that random beamforming is no more able

to match DPC for large number of users in the correlated case and that this deviation increases

with correlations. The second part of the report thus studied the effect of precoding on random

beamforming. Various forms of precoding were introduced to reduce the hit that results from antenna

correlation. It was shown that a technique like zero forcing that attempts to whiten the channel

worsens the performance of the random beamforming, while MMSE and diagonal beamforming

improve performance. An approximate precoding technique was also introduced that results in

closed form solution of the precoding matrix and performs as good as diagonal precoding.

One important by-product of our study is that it introduced a new technique for calculating the

CDF of ratios of weighted norms of Gaussian random variables. The technique was also extended to

the case where the variables are isotropically distributed. (see Sections 2.7 and 3.6.)

4.2 Recommendations

It is important to study the performance of various downlink scheduling techniques under various

non-idealities. This report considered the effect of spatial correlation. One limitation of our study,

however, is that we assumed that the users share a common correlation matrix. It would be interesting

to extend this study to the case where the users have different correlation matrices (or correlation

matrices that are a function of a random parameter that varies from one user to another).

The study also showed that in contrast to random beamforming, deterministic beamforming

continues to match DPC inspite of correlation. However, the major drawback of deterministic beam-

forming is that it is not able to provide fairness (thus a strong user will always dominate weaker

users). It would be thus interesting to devise hybrid deterministic/random beamforming techniques

that exhibit less hit with correlation and yet is capable to schedule users in a fair manner.

Finally, it would be interesting to extend the contour integration technique that we introduced

in this report to evaluate the CDF of ratios of quadratic forms to more general scenarios (e.g. to

correlated (real) Gaussian variables with nonzero means, to joint distributions of ratios of Gaussian

variables, ... etc.). This is a problem that we are currently considering [45].
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4.3 Summary of the Outcome of the Project Results

The project resulted in the following outcomes

1. The project studied the effect of spatial correlation on the scaling of dirty paper coding for

large number of users.

2. The project studied the effect of spatial correlation on the scaling of deterministic and random

beamforming.

3. The project showed that correlation results in an SNR hit on the sum-rate that depends on the

eigenvalues of the correlation matrix. The functional dependence of the hit on the eigenvalues

varies according to the scheduling technique used.

4. The project concluded that DPC and deterministic beamforming experience the least hit.

Moreover, random beamforming is no more able to match the sum-rate of DPC.

5. The project introduced precoding as a technique that could improve the performance of beam-

forming. While zero-forcing worsens the performance of beamforming, MMSE and the more

general diagonal precoding improve random beamforming performance.

6. As a by-product of our study, the project introduced a technique that evaluates the CDF

of (indefinite) quadratic forms in Gaussian random variables. The approach by passes the

characteristic function approach that is usually used and evaluates the CDF directly in closed

form.

4.4 Publications that Resulted from the Project

Here is a summary of the publications that resulted from this work

1. T. Y. Al-Naffouri, M. Sharif, and B. Hassibi “ How much does transmit correlation affect the

sum-rate of MIMO downlink channels?” to appear in IEEE Transactions on Communications.
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2. T. Y. Al-Naffouri and B. Hassibi, “On the distribution of indefinite Hermitian quadratic forms

in Gaussian random variables,” under preparation for submission to IEEE Transactions on

Information Theory

3. T. Y. Al-Naffouri and B. Hassibi, “On the distribution of indefinite Hermitian quadratic forms

in Gaussian random variables,” under preparation for submission to the International Sympo-

sium on Information Theory, 2009.

4. T. Y. Al-Naffouri “Opportunistic beamforming with precoding for spatially correlated chan-

nels,” submitted to IEEE Communication Letters.

5. T. Y. Al-Naffouri, M. Sharif, and Bnn. Hassibi “How much does transmit correlation affect

the sum-rate of MIMO downlink channels?” International Symposium on Information Theory,

Seattle, OR, Jul. 2006.

6. T. Y. Al-Naffouri and M Eltayeb, “Opportunistic beamforming with precoding for spatially

correlated channels,” to be submitted to Vehicular Technology Conference, 2009.

4.5 Talks that Resulted from the Project

This project also resulted in the following talks

1. “Indefinite quadratic forms in Gaussian random variables: Distribution, scaling, and appli-

cation to the broadcast channel,” Electrical Engineering Department, University of Texas at

Dallas, TX, Sep. 4, 2008.

2. “Indefinite quadratic forms in Gaussian random variables: Distribution, scaling, and applica-

tion to the broadcast channel,” Electrical Engineering Department, Smart Antenna Research

Group, Stanford University, CA, Aug. 22, 2008.

3. “Scaling laws of multiple antenna (group) broadcast channels,” Electrical Engineering Depart-

ment, University of California at Irvine, CA, Jun. 18, 2008.
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4. “Scaling laws of multiple antenna (group) broadcast channels,” Electrical Engineering Depart-

ment, University of Southern California, CA, Feb. 20, 2008.

5. “How much does correlation affect the sum-rate of MIMO downlink channels? Institute Eurcom,

Sophia-Antipolis, France, June 21, 2007.

6. “Broadcasting data to multiple user groups: Information theoretic investigation of the wide

band case,” Electrical Engineering Department, King Fahd University of Petroleum and Min-

erals, Dhahran, Saudi Arabia, May 1st, 2007.

7. “Opportunistic scheduling in wireless networks: An overview of issues and design considera-

tions,” (jointly with Dr. Yahya Al-Harthi (KFUPM) and Dr. Mohamed-Slim Alouini (Texas A

& M Qatar), Tutorial at the International Symposium on Signal Processing and its Applications

(ISSPA 2007), Sharjah, UAE, Feb 11, 2007.

8. “The effect of spatial correlation on the capacity of MIMO broadcast channels with partial

side information,” Electrical Engineering Department, King Fahd University of Petroleum and

Minerals, Dhahran, Saudi Arabia, Jan. 13, 2007.

9. “How much does correlation affect the sum-rate of MIMO downlink channels? Electrical Engi-

neering Department, Imperial College, London, UK, Nov. 23, 2006.

10. “How much does correlation affect the sum-rate of MIMO downlink channels?” Research De-

partment, Intel Corporation, Santa Clara, CA, Aug. 22, 2006.

4.6 Master Thesis Related to the Project

Part of this project also contributed to the following master thesis

“Opportunistic Scheduling with Limited Feedback in Wireless Communications Systems” - in

progress.
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