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 الخلاصــة

في . ARQالأداء الباهر لشفرات تربو يمكن توظيفه لتحسين إنتاجية أنظمة إعادة الإرسال التلقائي 
القنوات اللاسلكية، يمكن تحسين الإنتاجية عن طريق الموائمة المستمرة بين قدرة الشفرة على تصحيح 

  .الأخطاء، وحالة القناة

ويأتي تحسن الإنتاجية . ة باستخدام شفرات تربو المثقبة المهجنARQيدرس هذا البحث إنتاجية أنظمة 
 .آنتيجة لتصميم مجموعات الشفرات بتوظيف أنماط تثقيب جيدة

ABSTRACT 

The astonishing performance of turbo codes can be used to enhance the throughput 
efficiency of data networks based on automatic report request. In wireless channels, the 
throughput can be maximized by adaptively matching the error correction capability of 
the code to the prevailing channel conditions. This paper investigates the throughput 
efficiency of hybrid ARQ based on punctured turbo codes. The throughput is enhanced 
when code sets are designed along the guidelines of good puncturing patterns. 
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THROUGHPUT PERFORMANCE OF ARQ SCHEMES BASED ON PUNCTURED TURBO 
CODES IN RAYLEIGH FADING CHANNELS 

1. INTRODUCTION 

Automatic repeat request (ARQ) is one of the most powerful techniques to enhance the reliability of transmission for 
data networks. A basic ARQ scheme is based on error detection and retransmission. In this basic scheme, the message to 
be transmitted is encoded using an error detection code. The decoder checks the received message, and if no error is 
detected the message is delivered to the sink. A positive acknowledgement (ACK) may be sent back to confirm the 
successful reception of the message. In the event that error is detected, the erroneous message is discarded and a negative 
acknowledgement (NACK) is sent to the transmitter requesting a retransmission of the same message. The process is 
repeated until the message is successfully received [1]. 

The basic ARQ scheme described above is highly reliable but suffers from very low throughput efficiency when the 
channel quality degrades. To improve the throughput efficiency of ARQ schemes without sacrificing their reliability, 
hybrid ARQ/FEC schemes were proposed. Such schemes can be broadly classified as Type-I ARQ or Type-II ARQ. 
Type-I ARQ is a fixed-rate coding schemes that jointly employs one code for error correction and another code for error 
detection. 

Type-I ARQ is suitable for channels that are uniformly noisy and may be subject to infrequent impulses of noise. 
For time-varying channels, like those encountered in wireless transmissions, the throughput of the system can be 
maximized by adaptively matching the error correction capability of the code to the prevailing channel condition. 
This forms the motivation for Type-II ARQ schemes. The problem of constructing adaptive-rate error correction codes 
suitable for Type-II ARQ schemes has attracted many researchers for decades. 

For instance, an adaptive-rate scheme based on cascaded Hamming codes has been designed and analyzed in [2]. 
Hagenauer [3] proposed and analyzed a class of codes called Rate-Compatible Punctured Convolutional codes (RCPC), 
which are families of codes obtained through puncturing of a mother convolutional code. The astonishing performance 
of turbo codes [4] stimulated many researchers to consider their application in ARQ schemes. Recently, a capacity-
approaching Hybrid ARQ techniques based on turbo codes were presented [5]. The authors have used a parity spreading 
interleaver to realize a flexible puncturing scheme. Then, the reordered parity bits are transmitted sequentially in 
increments of predetermined size that can ensure rate-compatible codes. In this paper, puncturing will be considered to 
adaptively match the error correction power of turbo code to the time-varying wireless channel. The puncturing patterns 
are properly designed to yield the best throughput performance. 

The rest of the paper is organized as follows. In the next section the structure of the turbo encoder and decoder are 
explained. Rate compatible punctured turbo codes will be introduced in Section 3. Based on that, an ARQ scheme is 
proposed in Section 4. Throughput analysis is furnished in Section 5. This is followed by the simulation results, 
Section 6, and conclusions, Section 7. 

2. TURBO ENCODER/DECODER 

In a simplified turbo code, there are two convolutional encoders in parallel. The information bits are scrambled before 
entering the second encoder. The codeword in a turbo code consists of the input bits — i.e. the code is systematic — 
followed by the parity check bits from the first encoder and then the parity bits from the second encoder, as depicted in 
Figure 1. In general, one can have multiple turbo encoders with more than two branches. The convolutional code at 
every branch is called the constituent code (CC). The CCs can have similar or different generator functions. However, 
only the usual configuration with two branches having the same CC will be considered. 

A padding block is shown in the figure to append the proper sequence of bits to terminate all the encoders to the all-
zero state. This is necessary because a convolutional code may be used to generate a block code if we use beginning and 
tail bits. If one encoder is considered then the required tail is a sequence of zeros with length equal to the memory 
order v. The problem of terminating both encoders simultaneously seems to be difficult because of the interleaver. 
However, it is still possible to do with v tail bits only [6]. 
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In general another interleaver can be used before the first encoder but usually it is replaced with a delay line to account 
for the interleaver delay and keep the branches properly synchronized. 

In mobile radio communications where the channel is time varying, the SNR will instantaneously change such that 
some packets will be transmitted over a good channel, while others over a bad one. Therefore there is no single scheme 
that optimizes the throughput but an adaptive scheme. This adaptation can be obtained by puncturing. The advantages of 
puncturing a mother code are many and the interested reader can refer to the work in [7]. The puncturing module in 
Figure 1 is used for the rate adaptation of the turbo code. 

Turbo codes obtained from Recursive Systematic Convolutional (RSC) codes (where the state of the internal shift 
register depends on the past outputs) have proven to perform better than the non-recursive ones [7, 8], as such, RSC is 
widely considered and is adapted here. 

The decoder works in an iterative way. Figure 2 shows a block diagram of a turbo decoder.  The iteration stage is 
shown with dotted lines to differentiate it from the initialization stage.  In practice the number of iterations does not 
exceed 18, and in many cases 6 iterations can provide satisfactory performance [7]. The first decoder will decode the 
sequence and then pass the hard decision together with a reliability estimate of this decision to the next decoder. 
Now, the second decoder will have extra information for the decoding: an a priori value together with the sequence. 
The interleaver in-between is responsible for making the two decisions uncorrelated and the channel between the two 
decoders will seem to be memory-less due to interleaving. The details of what information to pass to the next decoder or 
next iteration stage are subject to research. In our simulation, a widely accepted decoding algorithm is used, which is the 
modified soft output Viterbi algorithm. 

Viterbi algorithm is an optimal decoding method that minimizes the probability of sequence error for convolutional 
codes. A modified version of Viterbi algorithm, called SOVA (Soft Output Viterbi Algorithm), which uses soft outputs 
is introduced in [9, 10]. SOVA has only twice the complexity of Viterbi algorithm. 

Decoding details of turbo codes are out of the scope of this paper. An interested reader is referred to [9–11] for further 
details. 

Figure 1. Simplified turbo encoder. 

 

Figure 2. Block diagram of a turbo decoder. 
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3. RATE COMPATIBLE PUNCTURED TURBO CODES 

The puncturing pattern can be described by a puncturing matrix. For a turbo code having N output branches, the 
puncturing matrix can be represented as follows: 

11 1

1

...
... ...

...

p

ik

N Np

p

p p
pN

P p

← →

⎛ ⎞↑
⎜ ⎟

= ⎜ ⎟
⎜ ⎟↓⎝ ⎠

P
 
, (1)

 

where every row corresponds to a branch of the encoder. Note that pik ∈ {0,1} where 0 implies that the corresponding bit 
is punctured. The period of the puncturing matrix is p. A degree of freedom in controlling the code rate can be gained by 
increasing p. 

If w(⋅) is the Hamming weight operator, then the rate of the code after puncturing with the puncturing matrix P is: 

( )
pR

w
=

P
 . (2) 

Different puncturing patterns of period 4 and rate 1/2 are illustrated in Table 1. For example, the puncturing matrix P41 
indicates that the first and third bits are not transmitted from the first parity branch. It also indicates that the second and 
fourth bits are not transmitted from the second parity branch. 

Table 1: Different Puncturing Patterns of Period 4. 

P41 = 
1 1 1 1
0 1 0 1
1 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  P42 = 
1 1 1 1
1 1 0 0
0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  and  P43 = 
1 1 1 1
1 1 0 1
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
It is important to mention that rate compatibility is required for Hybrid ARQ schemes. This restricts puncturing rule to 

such a form that all of the code symbols of high-rate punctured code are embedded in the lower rate codes. At each step 
the transmitter needs only to transmit supplemental code symbols, reason why Type-II ARQ scheme is often called 
incremental redundancy. 

A family of rate compatible punctured turbo codes (RCPT) can be obtained by puncturing a rate 1/N-mother turbo 
code. A set of puncturing rules is defined in the puncturing pattern. Examples of such patterns are shown in Tables 2–4 
for different periods. Table 2 shows three sets of puncturing patterns for period p = 2: R20, R2CC, and R21. The codes sets 
R20 and R2CC produce the code rates, 1, 1/2, 1/3 while the set, R21, produces the code rates 1, 2/3, 1/2, 2/5, 1/3. Note that 
in R2CC all bits corresponding to a parity branch have been punctured. This pattern therefore, transforms the turbo code 
into a convolutional code. 

Considering puncturing patterns of period 4, one can produce the rates, {1, 5
4 , 3

2 , 7
4 , 2

1 , 9
4 , 5

2 , 4
11 , 3

1 }.  An optimistic 
assumption of a less pathological channel may try to use all codes in this set. Hence, high throughput may be obtained. 
However, we have made a rather pessimistic assumption of bad channels, and therefore considered an exponential jump 
in the code rate selection. This gives rise to few code rates in the set we have used in the retransmission. For example, 
for p = 4 puncturing patterns R41, R42, and R43, shown in Table 3, were selected. Along similar lines, four sets have been 
considered for period 8, and these are shown in Table 4 (Note that the entries in the table are the decimal representation 
of the bits forming the puncturing pattern, partitioned starting from right, e.g. 2 = 10, 6 = 110, etc.). 
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Table 2: Rate Set Puncturing Pattern for Period 2. 

Name Pattern 

R20 
1 1
0 0
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 0
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 1
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

R2CC 
1 1
0 0
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 1
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 1
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

R21 
1 1
0 0
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 0
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 0
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 0
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1
1 1
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Table 3: Rate Set Puncturing Pattern for Period 4. 

Name Pattern 

R41 
1 1 1 1
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 0 0 0
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 0 1 0
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 0 1 1
1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 1 1 1
1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

R42 
1 1 1 1
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 0 0 0
1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 1 0 0
1 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 1 1 0
1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 1 1 1
1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

R43 
1 1 1 1
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 0 0 0
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 0 0 1
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 0 1 1
1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
1 1 1 1
1 1 1 1
1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Table 4: Rate Set Puncturing Pattern for Period 8. 

Name Pattern 

R81 
3 7 7
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
2 0 2
1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 1 2
3 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 5 3
3 6 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 7 7
3 7 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

R82 
3 7 7
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
2 1 0
0 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
2 5 2
1 2 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 7 2
1 3 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 7 7
3 7 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

R83 
3 7 7
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
2 1 0
0 4 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
2 5 1
2 5 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 5 5
2 7 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 7 7
3 7 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

R84 
3 7 7
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
1 0 4
0 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 , 
3 7 7
1 4 6
2 3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 5 6
2 7 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  
3 7 7
3 7 7
3 7 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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4. RCPT-BASED ARQ PROTOCOL 

The RCPT encoder encodes the information packet and stores all the coded bits in buffers for any possible 
retransmissions. The rate selector determines which parity bits are to be transmitted to ensure the codes adaptation to the 
state of the channel. The Rayleigh flat fading channel is assumed. The fade samples are zero mean and unit variance 
complex Gaussian variables. It is assumed that error-free (reliable), low capacity feedback channel does exist over which 
the receiving system can transmit the acknowledgements. 

ARQ systems can be implemented by choosing RCPT codes in a strategic way for each retransmission. The RCPT 
codes can be implemented with stop-and-wait, go-back-N, or selective-repeat schemes. However, selective-repeat ARQ 
strategy is considered for its throughput efficiency and the ease at which it can be adapted to other schemes [12]. 
For simplicity of analysis, we have considered an infinite buffer size. The general steps involved in the RCPT–ARQ 
protocol are given as follows. 

(1) Encode the kth packet with the rate 1/3 turbo code and buffer all the coded bits. Choose a set of puncturing 
patterns. Let m denote the set size. 

(2) First transmit the bits specified in the first pattern of the set (usually the information bits only). 

(3) The receiver assembles the received bits, inserting erasures for the bits that have not been transmitted according to 
the puncturing, and decoding is attempted. We have assumed that all error patterns can be detected. If the frame 
received by the sink is error free, an ACK is sent to the transmitter and the protocol is reset and returned to step 1. 
Otherwise, a NACK is transmitted back. 

(4) Upon reception of NACK the transmitter sends additional bits according to the next pattern of the set, then back to 
step 3. 

The first m transmissions will all be distinct. They exhaust all the code rates in the set, reaching the full turbo code of 
rate 1/3. We say this scheme has a degree of freedom of adaptation of m. If an error-free packet cannot be passed yet, 
different design options can be considered. The simplest is to accept a given frame error rate and pass the frame as is. 
Another option is to hold the decoder in full turbo but the transmitter is reset to step 2. In this case popular code 
combining is done. 

5. THROUGHPUT ANALYSIS 

Turbo codes are linear and hence they can be analyzed using the union bound. The fact that a turbo code is linear can 
be seen by recalling that every constituent code (i.e. the convolutional code that forms the turbo code) is linear and the 
interleaver performs a linear operation. Therefore, the union bound can be used for comparing the performance of 
different turbo codes. It can also be used to evaluate the effect of changing certain code ingredients. 

Turbo code performance at high SNR is best evaluated using analytical bound due largely to prohibitive amount of 
simulation required. The bound is good at high SNR where neglecting higher weights is less detrimental to the 
approximate bound. The evaluation of the union bound requires finding the weight distribution of turbo codes. This can 
be obtained through the transfer function of the code. Different techniques are developed to account for the effects of the 
interleaver and the puncturing pattern [13]. Since the focus of this paper is on throughput analysis, it is assumed that the 
frame error rate, FER, is known. For calculation of BER and FER, the reader is referred to [13]. 

The throughput, ρ, is a measure of the transmission efficiency. For selective-repeat ARQ scheme this is defined as the 
ratio of the length of the information frame to the average total number of bits, Na, required to be transmitted before the 
information frame is passed to the sink. 

For the type-II HARQ system, the average number of frames needed to transmit one frame of information is bounded 
as follows. Let Fk denote the probability of frame error after processing the kth transmission of bits belonging to the 
frame. Let us consider the case of three stages of adaptation, where firstly the systematic bits are transmitted (frame error 
F1), followed by first set of parity (frame error F2) and then second set of parity (frame error of TC F3). Note that in this 
case the parity frames are of the same length as that of the information frame. If error-free decoding is not achieved, this 
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sequence is repeated but the decoder will be held in full turbo decoding. That is on the kth transmission, k > 3, the 
decoder utilizes the newly transmitted sequence with the most recent transmissions of the other two sequences. 
For RCPT–ARQ system with three stages of adaptation (m = 3) Na can be obtained as, 

2
1 1 2 1 2 3 1 2 3 3 1 2 3 3 = 1(1 ) + 2 (1 ) + 3 (1 ) + 4 (1 ) + 5 (1 ) + ...aN F F F F F F F F F F F F F F− − − − −  

1 1 2 1 2 3 3
0

= 1(1 ) + 2 (1 ) + (1 ) (  + 3) n

n
F F F F F F n F

∞

=

− − − ∑ , (3) 

Where, F1 = (1 – (1 – ε)K), ε is the channel bit error probability, F2 depends on the puncturing pattern used and F3 is the 
frame error rate for the turbo code. After some manipulations of (3), we arrive at, 

Na = 1 + F1 + F1F2 /(1–F3). (4) 

Finally the throughput efficiency, ρ, can be found, 

ρ = l /Na . (5) 

Along the same lines, we can evaluate the throughput of the ARQ scheme when more adaptation steps are utilized. 
It is worth noting that by increasing the number of adaptation steps the size of the parity frames becomes a fraction of 
that of the information frame. For example, at m = 5 the size of the parity frame is half that of the information frame. 

We have assumed in the previous analysis that frames are retransmitted until received without errors. This could end 
up with a very long (theoretically infinite) delay. Such cases cannot be tolerated in real-time applications. Another 
strategy suitable for real-time applications is to stop the retransmission at certain maximum number of requests thus 
limiting the delay to an acceptable level and tolerate some frame error. With this strategy, Na for m = 3 becomes, 

1 1 2 1 2 3 1 2 3 4 1 1  1(1 ) + 2 (1 ) + 3 (1 ) + 4 (1 ) + ...+  ...  (1 )a n nN F F F F F F F F F F nF F F−= − − − − −  

1
1

1
(1 )

n k
k jj

k
k F F−

=
=

= −∑ ∏ , (6) 

where n is the number of allowable decoding attempts. The system will then be evaluated in terms of frame error rate in 
addition to the throughput efficiency. The frame error rate is given by: 

FER = Fn . (7) 

The performance analysis presented above indicates that we need to evaluate the FER for the turbo code for the 
different parity transmitted based on the puncturing patterns used in order to determine the throughput for the RCPT–
ARQ scheme. 

For the completeness of the analysis we mention some factors that will slightly reduce this throughput. These are the 
CRC bits and tail bits needed to force the constituent encoder to a zero state. Being few compared to the frame size, their 
effect on throughput is minimal. We have therefore ignored them for the sake of simplicity. 

The frame error rate bounds on the probabilities for TC, or by extension PTC are known to be weak. The extreme 
weakness of this bound has been revealed in [12]. This is the main reason why the throughput performance of 
RCPT–ARQ is almost always estimated through simulation, and this work is not an exception. However, the bound of 
Equation (6) is still useful to show for certain configurations of the puncturing schemes as it reveals the relative 
performance of these schemes. This is shown in Figure 3 for the region in which the bounds make some sense. Figure 3 
shows the bound for a turbo-based FEC/ARQ where uncoded, convolutional or rate-1/3 turbo code is used with no rate 
adaptation. Also shown is a scheme where rate adaptation is considered. We have used three steps (m = 3); the uncoded 
(rate = 1), best puncturing pattern of period 2 (rate = 1/2), and turbo code (rate = 1/3). It can be seen how an adaptive 
scheme together with good puncturing patterns can improve the throughput. 
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Figure 3. The through bound for different retransmission strategy. 

6. THE SIMULATED THROUGHPUT RESULTS 

The throughput simulation results are presented for turbo-hybrid ARQ scheme for different parameter settings. 
Firstly, the effect of the period of the puncturing pattern on the throughput performance is considered. Secondly, the 
effects of different puncturing patterns are evaluated. And thirdly, the performance changes due to increasing the number 
of adaptation steps. 

We start by examining the effect of the selection of the puncturing patterns. For that purpose the period of puncturing 
p and the size of the code set (adaptation stages) are kept fixed. Two code set sizes: m = 3, 5, and puncturing periods, 
p = 2, 4, 8, are considered. 

Figure 4 presents the throughput performance curves for schemes using puncturing patterns of period 4 from Table 1. 
For all curves, the puncturing patterns for the first and last stages are the same: only information bits, and the full code, 
respectively. For the intermediate stage, the middle (third) puncturing pattern of each of P41, P42, and P43 shown in 
Table 1 is used. It is clearly seen that the performance obtained with P43 is woeful in comparison with others. The results 
show that the gain in throughput due to selecting a good puncturing pattern could reach more than 15%. 

The throughput performance evaluation is extended to m = 5 (five steps of adaptation). It is worth noting that for 
higher periods additional flexibility is obtained in the number of intermediate steps before reaching the full turbo code. 
This implies that more degree of freedom is allowed in the puncturing rule. In fact, this can yield a better code 
performance compared to the case of shorter puncturing periods. Figure 5 shows the effect of the position of the 
punctured bits for period 4. It is seen that code rate set of R41 gives a better performance than R42 or R43 . We have 
generally observed that for the code structure used, the bits retained or punctured of the parity sequences have direct 
effect on the code performance contrary to the opinion contained in [14]. Their conclusion may be based on the context 
of their investigation. 
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Figure 4. Throughput comparison of different patterns for  p = 4,  m = 3. 
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Figure 5. Throughput comparison of different patterns for  p = 4,  m = 5. 
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Figure 6. Throughput comparison of different periods with  m = 5. 
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Figure 7. Throughput comparison of different intermediate rates of  periods 8. 
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Next, the effect of the puncturing period on the code performance is investigated. For that reason m is kept fixed, and 
the best pattern for each case is used. The value m = 5 is considered in Figure 6 for the best performance of periods 2, 4, 
and 8. The improvement in the throughput is observed using a larger period. This can be attributed to the freedom 
offered by larger periods in distributing the punctured bits. However, the improvement is of diminishing nature. 
The improvement of going from p = 4 to p = 8 is less than that from p = 2 to p = 4. 

Finally, the effect of the adaptation steps on the throughput performance is studied. For this case we have compared 
the code rate set {1, 2/3, 1/2, 2/5, 1/3} with the set {1, 1/2, 1/3} for p = 8 in Figure 7. Generally, the higher the degree of 
freedom in selecting the code rate the higher the throughput performance. It was observed that the gain is more 
pronounced for larger periods than for shorter ones, an improvement of 10% is obtained due to increasing the number of 
adaptation steps for p = 4, 8. 

7. CONCLUSIONS 

This paper examined hybrid ARQ schemes built on punctured turbo codes, and evaluated their performance by 
simulation. It is found that the puncturing pattern have a significant effect on the throughput. Simulation results show 
that a throughput difference of 15%–20% between the best pattern set and the worst pattern set is possible. When the 
period of puncturing is prolonged, even higher throughput values are possible, provided that the puncturing patterns are 
properly selected. However, the effect of prolonging the period diminishes as the period increases.  It was also shown 
that increasing the degree of freedom of adaptation (more transmissions before repetition starts) can improve the system 
throughput, provided that the puncturing period is long enough to allow the design of good puncturing pattern sets. 
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