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Abstract: The authors address various important issues related to punctured turbo codes. A 
modified technique for finding the transfer function of punctured turbo codes is developed. This 
modified technique provides a means of deterministic evaluation of the weight distribution of the 
code, as well as a possibility of studying vanous puncturing patterns. These advantages are shown 
with some illustrative examples. Moreover, the paper explains some characteristics of the 
puncturing pattern, and arrives at useful guidelines for the design of a good puncturing matrix. 

1 Introduction 

Turbo codes (TCs) demonstrate a, means of closely 
approaching the Shannon capacity of a communication 
channel. The natural rate of a turbo code with two 
component codes is 1/3. Puncturing is commonly used to 
yield turbo codes of rates greater than the rate of the mother 
code. The need for puncturing arises in other applications as 
well. In speech or image compression some bits may be 
more significant than others, thus requiring a higher level of 
protection. Such unequal error protection can be achieved 
by puncturing [l]. Kim et al. [2] present an interesting 
scheme that uses punctured TCs to improve the perfor- 
mance of a soft handover in wideband CDMA (W-CDMA) 
systems. However, by far the most important application of 
puncturing is found in type-I1 adaptive hybrid FEC/ARQ 
schemes used over time varying channels [2-5]. 

Puncturing is used in these schemes to generate rate 
compatible punctured codes (RCPCs), a family of codes 
with different rates, from the same family of encoder/ 
decoder pairs. Punctured convolutional codes were first 
introduced by Cain et ul. [6]. Since then, a set of excellent 
papers on the analysis of punctured convolutional codes has 
appeared. The paper by Hagenauer [7] is undoubtedly the 
most cited paper in this field. As a result of all these efforts, 
punctured convolutional codes are now well understood. 
The situation is not the same for punctured turbo codes. 
Most of the results reported in the literature are based only 
on simulation. Some results even contradict each other [8]. 

T h s  paper attempts to provide a better understanding of 
the effects of puncturing on the performance of turbo codes. 
Our approach is based on a modified technique for the 
evaluation of the weights of a punctured turbo code. The 
modified technique is shown to yield a more accurate 
enumeration of the weight distribution and lead to a tighter 
upper bound on the bit error rate of the code. Moreover, 
the modified technique facilitates the task of investigating 
different puncturing patterns. 
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2 Elements of turbo codes 

A simplified schematic of the turbo encoder is shown in 
Fig. 1. There are two convolutional encoders in parallel. 
The information bits are scrambled before entering the 
second encoder. The codeword in a turbo code consists of a 
frame of input bits followed by the parity check bits from 
the first encoder, then the parity bits from the second 
encoder, i.e. the augmentation X,  X ,  X , .  

Fig. 1 Simplijied turbo-encoder 

The convolutional code in every branch is called the 
constituent code (CC). The CCs can have similar or 
different generator functions. We will concentrate on the 
most widely used configuration where the two branches 
have the same CC. 

Puncturing is usually introduced to increase the rate of 
the turbo code. Equivalently, one may use higher rate 
component codes. A comparison between these two 
approaches is interesting, but is beyond the scope of this 
work. 

A puncturing matrix P of period p applied to a turbo 
code having N output branches can be represented by: 

where every row corresponds to one output branch, i.e. the 
first row corresponds to the systematic branch, the second 
row corresponds to the first parity branch and so on. Note 
that glk E (0, l} where 0 implies that the corresponding bit is 
punctured. A degree of freedom in controlling the code rate 
can be gained by increasing p .  
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If w(.) is the Hamming weight operator, then the rate of 
the code after puncturing with the puncturing matrix P is 

For the unpunctured case iv(P) = Np and (2) reduces to 
R = UN. 

3 Weight distribution of unpunctured turbo codes 

Evaluation of the perfonnance of turbo codes requires a 
knowledge of the weight distribution, which can be 
obtained from the transfer function. We outline here the 
steps for calculating the transfer function of turbo codes. As 
a first step, we review the procedure for finding the transfer 
function of the constituent code. 

3. I 
The constituent code, CC, is the basic building block of the 
turbo-encoder. Many researchers have used the (1,5/7 ,5/7) 
convolutional encoder for the CCs. It has an excellent 
performance compared to other encoders of the same 
complexity [9], because of its primitive feedback polynomial. 
The derivation that follows is based on thls code, but the 
same technique is applicable to any other code. 

The encoder of the CC can be represented in many ways. 
In Fig. 2, the block diagram, the state diagram and the state 
transition matrix of the selected code are shown. The state 
diagram is useful to enumerate all paths and their 
corresponding weights. In general, the transitions in the 
state diagram are labelled with the inputioutput weights of 
the corresponding branch. For a systematic code, the labels 
may be simplified to inputlparity weights, as shown in 
Fig. 2b. 

It is convenient to replace each branch label with the 
polynomial W" 2, where Wand 2 are dummy variables 

Transfer function of the constituent code 

information 
X1 

y2 

a 

o/o 

b 

1 o w z o  
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C 

Fig. 2 Dflerent representations of the (1,517) encoder 
CI Block diagram 
b State diagram 
c Transition matrix 

introduced to facilitate the enumeration of the input weight 
and parity weight, respectively. For every branch, M, and z 
are either 0 or 1. Using this notation, the information 
contained in the state diagram can be transformed to the 
transition matrix A(W, Z )  shown in Fig. 2c. 

For a frame of length k we define the frame transition 
matrix F( W, Z )  as: 

The transfer function can be written in the form 
F ( W , Z )  = A k ( n : Z )  (3) 

T (  W ,  Z )  = A,$,,= W"Zi (4) 
W.2 

where the coefficients A , , ,  denote the corresponding 
multiplicity of the codewords, i.e. the number of codewords 
having systematic weight M, and parity weight z. The 
transfer function T(W, Z )  may be found exclusively in the 
(0, 0) element of the matrix F( W, 2) [IO]. 

For systematic codes, the overall output weight is given 
by the sum of the powers w+z. Therefore the weight 
distribution function of the code can be found from T( W,Z) 
by setting W = Z = H, where H is a dummy variable 
whose power is equal to the total weight of the codeword. 
The weight distribution function has the form 

T ( H )  = x A h H h  ( 5 )  
h 

where the coefficient A,, is the number of codewords with 
Hamming weight h. Of prime importance in the evaluation 
of the weight distribution of turbo codes is the conditional 
transfer function of the constituent code, T,,(Z). The 
function T,,(Z) gives the weight distribution of the parity 
sequences that results from a weight-iv input sequence. It is 
represented by the summation 

Obviously, the transfer function and the conditioned 
transfer function are related by 

T (  w, Z )  = W"T,,(Z) = T,,(Z, W )  (7) 
W I S  

where 

T,(Z, W )  = W"T"(Z) (8) 
is the weight distribution of the output for weight-w input. 

3.2 Transfer function of turbo codes 
Owing to the presence of the interleaver, the transfer 
function of turbo codes cannot be found directly. Some 
researchers [9, IO] resort to finding the transfer function of 
the turbo code from the conditional transfer function using 
(7). The condtional transfer function for the turbo code, 
T,,, TXZ),  can be formulated from the corresponding 
functions of the CCs T,,C, (2) and TW,cL (Z )  for a particular 
interleaver, where the subscripts TC, C, and C2 have been 
added to identify the three functions. 

The role of a particular interleaver can only be 
incorporated by exhaustive enumeration of all possible 
input-output pairs, which is a lengthy process for large k. 
To overcome this difficulty, Benedetto and Montorsi [lo] 
introduced the uniform interleaver, defined as follows: A 
uniform interleaver of length k is a probabilistic device that 
maps a given input word of weight w into all distinct C 
permutations of it with equal probability of l/CL. 

The uniform interleaver cannot be used in practice, since 
one is required to use a particular random interleaver. It is 
not clear in this regard how a uniform interleaver behaves 
compared to a random interleaver. In [lo] it was shown that 
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for each value of the signal-to-noise ratio, the performance 
obtained with the uniform interleaver is achievable by at 
least one random interleaver. However, [ 1 11 demonstrated, 
by simulation, that the performance of some practical short 
interleavers exceeds that suggested by the uniform inter- 
leaver. 

Under the assumption of a uniform interleaver, the 
conditional transfer function for the turbo code is given 
by [lo1 

(9) 

Equation (9) is obtained based on the assumption that, for a 
given input weight, every output of the branch may be 
appended to every output of the second branch with the 
same probability. By substituting (9) in (7), we obtain 
the transfer function of the turbo code, and hence the 
coefficients {A,,:=} for all possible values of w and z. 

The information obtained about the weight distribution 
is used to find the bit error probability for the turbo code 
[lo]: 

where R, is the code rate, EhIN0 is the signal to noise ratio 
(SNR) of the AWGN channel and D,,, is obtained from the 
weight distribution according to: 

4 

For unpunctured systematic codes, the overall output 
weight is equal to the sum of the input weight and the 
parity weight. The information about the input weight and 
the corresponding parity weight is fully contained in the 
transfer function, T(W, 2). Unfortunately, this is not the 
case for punctured codes, which makes the task of finding 
their weight distribution a tedious one. 

A brief description of the algorithm required for the 
evaluation of the transfer function of punctured turbo 
codes follows. We treat separately the case of puncturing 
parity bits and that of puncturing systematic (information) 
bits. 

Weight distribution of punctured turbo codes 

4. I Puncturing parity bits 
Let the frame size k be a multiple of the puncturing period 
p .  For illustration, let the puncturing period p = 4 and the 
puncturing pattern be 1101. This means that the third 
symbol in every sub-sequence of four symbols is punctured. 
To compute the frame transition matrix F(W, Z),  we 
compute first the period transition matrix B, i t .  the 
transition matrix over one period, 

B ( W , Z )  = A ( W , Z ) A ( W , Z ) A ( W ,  l ) A ( W , Z )  (12) 

Setting the parity variable Z in the thrd matrix to '1' 
indicates that the third bit is not transmitted. 

In general, for puncturing, period p and arbitrary 
puncturing vector P' (where P' is a vector corresponding 
to the ith parity row of the puncturing matrix P), we form 
the period transition matrices for the two parity branches 
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B,, and Bc, using the matrix multiplication: 

i = 
P 

B ,  ( w, Z) = JJ A (  w, z p q  
j=  1 

Where P'(J is thejth element of the vector P'. 

computed as the (k/p)th power of B( W, Z) ,  i.e. 
The frame transition matrix F(W, z) can then be 

F c , ( W , Z )  = B g p ( W , Z )  i = 1 , 2  (14) 

The above procedure can be used to calculate the weight 
distribution for different puncturing patterns of each 
constituent code. The resultant matrices are used, as 
outlined in Section 3,  to find the conditional transfer 
functions, which are then substituted in (9) to find the 
composite transfer function of the turbo code under 
uniform interleaving. 

4.2 Puncturing systematic bits 
When systematic bits are punctured, the weight of the 
output systematic branch, say y ,  may be different from the 
weight of the input sequence, w. Unfortunately, the 
procedure to find the transfer function, explained in Section 
3,  does not have the capability to keep a record of both. 

For an input sequence of length k and Hamming weight 
w, if A4 bits in a period of p are punctured then the total 
number of punctured bits is (kMly). The punctured 
systematic sequence weight y is then bounded as 

w- ( k M / P )  5 y 5 w (15) 
The probability p ( y  I w) of producing a weight-y systematic 
output by puncturing a weight-w input sequence is often 
found in a probabilistic way. It is usually assumed that all 
patterns of kM/p punctured bits out of the k bits are 
possible, and that they are all equiprobable. Based on these 
assumptions, it follows that 

In addition to being probabilistic, the above technique does 
not account for the particular puncturing pattern nor the 
particular CC used. In the following Section, we present a 
modified algorithm for finding the transfer function, which 
is free from these shortcomings. 

5 Modified transfer function of punctured codes 

As mentioned above, when puncturing is applied to the 
systematic sequence, the weight of the output systematic 
branch may be different from the weight of the input 
sequence. Hence, the overall output weight does not equal 
the sum of the input and parity check weights. This 
necessitates keeping a separate record for each. 

To accomplish this task we will modify the state diagram 
by appending the variable Y to each branch. The power of 
Y can be 0 or 1 depending on whether the systematic bit is 
punctured or not. The resultant modified transfer function 
and the conditional transfer function are denoted by T( W, 
2, Y) and T,,, (Z, Y), respectively. 

The modified conditional transfer function is represented 
by the following summation: 

The systematic branch is considered to be a part of the first 
constituent code. Therefore only the transition matrix of the 
first constituent code has to be modified to account for the 
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variable Y. The variable Y is introduced in the transition 
matrix by replacing W by WY. 

To illustrate the above procedure, let us find the transfer 
function of the (1,5/7,5/7) code under puncturing. For the 
(1,5/7) constituent code the modified transition matrix will 
be 

( 1  0 W Y  o \  
O 1 (18) A ( W , Z ,  Y )  = ( o w o z  

W Y  0 1 

\ o  2 0 W Y )  

Consider the puncturing matrix, 

P =  [; ; p] (19) 

The transition matrix over one period for the first 
constituent code is 

Bc, ( w. z ,  Y )  = A ( w, z, Y ) A  ( w, 1, Y ) A (  w, z ,  1)  (20) 

Bc , (W,Z)  = A ( W .  I ) A ( W , Z ) A ( W , Z )  (21) 
whereas that for the second constituent code, C2, is 

The transition matrices for C, and C2 over a frame of length 
k are then calculated as 

Fc, ( W ,  Z ,  Y )  = Bzp(  W .  Z ,  Y )  (22) 

F c , ( W , Z )  = B g q W , Z )  (23) 
The resultant Fc, and Fc2 are used to calculate the 
composite transfer function using the assumption of a 
uniform interleaver and the relation in (9) 

In fact, the variables Z and Y in (22) and (23) can be 
replaced by the variable H. This simplification is based on 
the observation that from this point onward the contribu- 
tion of the punctured systematic and parity branches to the 
overall output weight need not be distinguished. This will 
simplify the calculation of the frame transition matrix Fcl, 
which will then be a function of two variables W and H, 
with the power of the variable H carrying the overall output 
weight for the first CC. 

The above approach allows the exact determination of y 
for a given w, and hence is referred to as deterministic. The 
next Section shows that the deterministic approach leads to 
a more accurate evaluation of the weight distribution of 
turbo codes that the probabilistic approach. 

6 Deterministic approach versus probabilistic 
approach 

Let LIS start by a simple example for demonstration. 
Consider the popular (7,4) Hamming code. All the code- 
words resulting from an input of weight two (w = 2) are 
shown in Table 1. The first four bits are the systematic bits 
bo b, b2 b3. From the Table it is clearly seen that 

T2(Z) = 3 2  + 32’ (24) 
For a turbo code built of two (7,4) Hamming codes and the 
uniform interleaver, the conditional transfer function is 
given by 

= 1 .5Z2 + 3Z3 + 1 .5Z4 (25) 
Note that the sum of the coefficients of Z is 6, which is the 
total number of codewords with input weight two. 

If the two systematic bits bl and b3 are punctured, then 
the output conditional transfer function for the punctured 
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Table 1: 
(7,4) Hamming encoder 

Codewords as a result of weight-two input for 

Systematic Parity Polynomial 

bo bi b2 b3 b4 bs bs 

representation 

1 0 1 0 0 0 1 z  
0 1 1 0 1 0 0 2  
0 0 1 1 0 1 0 z  
0 1 0 1 1 1 o , z 2  

1 0 0 1 0 1 1 z ~  
1 1 0 0 1 0 1 z 2  

Conditional distribution (3Z+3Z2) 

code can be calculated using either the probabilistic or the 
deterministic approaches. For the probabilistic approach, 
(1 6) yields: 

p ( y  = O~IV = 2)  = 1/6, p ( y  = llw = 2 )  
= 2/3 and p ( y  = 2 / w  = 2) = 1/6 (26) 

The output conditional transfer function for the punctured 
turbo code is then given by 

T?.rc(Z, Y )  = (1.5Z2 + 3Z3 

+ 1.5Z4) ( i i  -+-Y+!Y’)  6 (27) 

If the punctured bits were bo and b2 instead of 6, and 63 the 
same result would be obtained. Moreover, the effect of 
puncturing, represented by the second bracket, is totally 
isolated from the first bracket, which is determined by the 
specific code used. This means that the amount of 
degradation in performance due to puncturing is indepen- 
dent of the specific code used. Both observations represent 
weaknesses of the probabilistic approach. 

Let us now find the output conditional transfer function 
using the deterministic method developed in this paper. 
Table 2 traces the effect of puncturing bits b, and b3 on the 
weight distribution of the code. After puncturing, the 
output conditional transfer function for the first constituent 
code is given by 

T2,c, ( Z ,  Y )  = 2YZ + Z2 + 2 E 2  + Y 2 Z  (28) 

Table2: Codewords as a result of input weight 2 for 
punctured (7.4) Hamming code when b, and & are 
punctured 

Systematic Parity Polynomial 

b,, b, 9 & b4 b5 b6 representation 

1 0  1 0  0 0 1 Y2Z 
O l l O l O O M  
0 0 1 1  0 1 0  YZ 
0 1 0  1 1  1 0  2 2  

1 0  0 1 0  1 1  YZZ 
1 1  0 0 1 0  1 YZZ 

Conditional 
distribution 

Y 22 i 2  MiZ2+2 YZ2 
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Tables Conditional weight distribution of U,4) Ham- 
ming turbo code using the probabilistic and deterministic 
techniques 

~ _ _ _ ~  

Weight j 0 1 2  3 4 5 6 Sum 

Probabilistic 0 0 0.25 1.5 2.5 1.5 0.25 6 
Deterministic 0 0 0 1.5 3 1.5 0 6 

and that for the second constituent code is given by 

T2,CZ(Z, Y) = 32 + 3z2 (29) 
The conditisnal transfer function of the turbo code is given 
bY 

T2 e, x T2 e, 
6 T2Tc = 

= l .5H3 -t- 3H4 + 1.5H5 (deterininistic) (30) 
whereas that obtained by the probabilistic approach is 

7 ' 2 , ~  = 0.25H2 + 1.5H3 + 2.5H4 + 1.5H5 

f 0.25H6 (probabilistic) (31) 
In obtaining (30) and (31) every Y and Z was replaced by 
H.  The differences between the two methods are reported in 
Table 3 .  The deterministic method shows that the minimum 
output weight generated from a weight-2 input is not less 
than three, irrespective of the interleaver used, whereas the 
probabilistic method produces some codewords of weight 2. 

It is worth noting that if bo and b2 are punctured instead 
of bi and b3 the deterministic approach yields a different 
weight distribution. This is illustrated in Table 4. Therefore, 
unlike the probabilistic method, the deterministic method is 
sensitive to the puncturing pattern. 

Now let us turn to the (1,5/7,5/7) turbo code. The 
systematic sequence is punctured according to the vector 
[I  1 01. Table 5 shows Om, whch is a measure of the weight 
distribution of the code defined in ( I l ) ,  up to the weight 
rn = 18 using the two techniques. In particular, the results 
of the deterministic approach show that the minimum 
distance of the code cannot be less than 6, whereas the 
probabilistic approach allows the presence of codewords of 
weights 4 and 5. Also, the results of the deterministic 
approach show that odd-weight codewords do not exist, 

Table& Codewords as a result of input weight 2 for 
punctured (7,4 Hamming code when and & are 
punctured 

Systematic Parity Polynomial 

bo bl 9 bj b4 4 & representation 

1 0 1 0 0 0 1 z  
O 1 1 O 1 O O M  
0 0 1 1 0 1 0 z ~  
0 I O  1 1  1 0  Y2Z* 
1 0  0 1 0  1 1  YZ2 
1 1  0 0 1 0  1 YZ* 

Conditional 
distribution 

z+ M+Z2+ Y 2 2  *+2 YZ = 

Table 5: 
using the probabilistic and the deterministic techniques 

0, for the (1,5/7 3/71 turbo code and P = [I 101 

Codeword 
weight m 

D, [probabilistic] 0, [deterministic1 

- 

3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 

0 
0.00001758369 
0.0001 0925460 
0.00032662980 
0.00080264 170 
0.00390303700 
0.01 206679000 
0.01856358000 
0.02618730000 
0.03786333000 
0.0491 2956000 
0.07454436000 
0.10620620000 
0.17585560000 
0.28859980000 
0.51055000000 

0 
0 
0 
0.0004947929 
0 
0.0097513440 
0 
0.0366604400 
0 
0.0728424400 
0 
0.1423494000 
0 
0.3456495000 
0 
1.0028360000 

whereas the probabilistic approach fails to detect this 
structural information. 

Fig. 3 shows a comparison between the bounds obtained 
using the probabilistic method and the deterministic method 
for the (1,5/7,5/7) turbo code. We considered two punctur- 
ing patterns of the systematic sequence. In the first case, one 
systematic bit is punctured in a period of two (A4 = 1, 
p = 2), whereas in the second case, one systematic bit is 
punctured in a period of three (A4 = 1, p = 3). The Figure 
shows that, although both bounds are comparable at low 
SNR (waterfall region), the deterministic bound is getting 
significantly tighter at hgh SNR (flattening region). This 
observation is consistent for both puncturing patterns. The 
reason behind t h s  behaviour can be explained by noting 
that, at high values of SNR, the code performance is 
dominated by the minimum distance of the code, which is 
underestimated by the probabilistic approach. 

[r 
w m 

loLi5 1 
0 2 4 6 8 10 

Eb IN,, dB 

Fig. 3 
probchhtic and the deterministic techniques 

Comparison of the upper bounds on the BER using the 
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7 Puncturing patterns 

In principle, puncturing can be applied to information bits 
and/or parity bits. However, it is reported that puncturing 
systematic bits may have a drastic effect on the code 
performance [12]. Therefore, it is advisable to avoid 
puncturing systematic bits and confine puncturing to the 
parity bits. 

The fact that the two parity sequences play an identical 
role at the decoder suggests that puncturing should be 
distributed equally between the parity branches. It is also 
intuitive to suggest that the punctured bits in any sequence 
be well scattered, as adjacent puncturing destroys the 
structure of the code. 

To test the above conjectures, four puncturing matrices 
are investigated: 

P I =  0 1 0 1 P ? = =  1 1 0 1 [: I : 11 [I I : I] (32) [: 1 : :] [: : I I] P3= 1 1 0 0 Pq= 1 1 1 1 

All four matrices have a period of four (p = 4) and a total 
number of punctured bits equal to 4, thus ensuring a fair 
comparison between them with respect to the resultant code 
ratio. In PI ,  puncturing is equally distributed between the 
two panty branches and maximally scattered within each 
branch. In P2, puncturing is not equally distributed, 
whereas in P3 it is not well scattered. The puncturing 
matrix P4 is the extreme case of puncturing the second 
parity sequence completely and leaving the first parity 
sequence intact. In fact, this puncturing pattern transforms 
a turbo code to a normal convolutional code. 

Fig. 4 shows the performance of the turbo code under the 
puncturing matrices. Clearly, Pi has the best performance, 
Pz and P3 are slightly inferior to P I  but P4 is much worse. 
These results support the previous conjectures. 

The procedure for formulating the block transition 
matrix requires computing the transition matrix over one 
period. The transition matrix, B, over one period is 

loo 

lo-’ 

1 o-2 
a: !A 
m 

1 o - ~  

0 0.5 1.0 1.5 2.0 2.5 3.0 

€bIN0 

Fig. 4 Pevformunce of’ turbo code under d#ermt puncturing 
urrungetnents of’ the purity sequence 
See (32) for definitions of puncturing matrices 

computed as in (13). Multiplying B by itself (klp) times 
results in the required transition matrix over the entire 
frame. Owing to the grouping property of matrix multi- 
plication, cyclic shifts will not affect the overall result, 
assuming the sequence is relatively long. Noting that cyclic 
shifting of columns does not change the puncturing pattern, 
with respect to the two conditions stated in the previous 
Section, one can also arrive at the same conclusion. The 
independence of the performance to cyclically shfting the 
columns of the puncturing matrix is venfied by simulation, 
as shown in Fig. 5. P5 is obtained from PI by one cyclic 
shift of columns. 

1 1 1 1  
PI= 0 1 0 1 P g =  1 0 1 0 [J [::::I (33)  

Fig. 5 shows that PI and Ps have essentially the same 
performance. This property has been tested for different 
interleavers and the behaviour was found to be consistent. 

It should be noted that permutation of columns other 
than cyclic shifting might affect the performance, as it might 
modify the scattering of punctured bits. In Fig. 3 4  P 3  is 
obtained from Pi by interchanging columns 1 and 4. Fig. 4 
shows that the two patterns yield a different performance. 
Although the difference is not great, it will be more 
pronounced as the puncturing period increases. 

The results of this Section lead to the following set of 
guidehnes for constructing a good puncturing matrix: 
puncturing systematic bits should be avoided; puncturing 
should be applied equally to parity sequences; within every 
parity sequence, punctured bits should be scattered as much 
as possible and puncturing matrices obtained by cyclically 
shifting the columns have essentially the same performance. 

loo i 
10-1 - 

lo-z - 
m 

- 

1 o - ~  

lo-z - 
m 

0 0.5 1.0 1.5 2.0 2.5 3.0 

Fig. 5 Perfortnunce under coluinn pesmutations OIZ the punctmring 
matrix 
See (33) for definitions of puncturing matrices 

8 Conclusion 

A modified technique for the evaluation of the transfer 
function of punctured turbo codes has been developed. The 
modified technique provides a more accurate enumeration 
of the weights and, consequently, a tighter upper bound on 
the bit-error rate. It also permits the study and comparison 
of different puncturing patterns. Our investigation leads to a 
set of useful hints in the design of a good puncturing matrix. 
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We believe that the techniques and findings of this paper are 
useful for any further research on punctured turbo codes. 
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