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Abstract: 

In ATM networks, a fixed-length cell consisting of a header and a payload is 
transmitted. A cell may be dropped during the transmission due to buffer 
overflow or a detected error in the header. This paper proposes a cell loss 
recovery technique using two-dimensional erasure correction. The cells to be 
transmitted are arranged in a matrix form. A parity check cell is appended to 
each row and each column based on single parity encoding. Such an encoding 
scheme is capable of recovering many cell-loss patterns. It is shown through 
analysis and simulation that the proposed scheme, though simple, results in a 
very low post-decoding cell loss rate and outperforms the performance of one-
dimension recovery when both schemes are operating at the same redundancy 
rate. 
 
1. Introduction 
Asynchronous Transfer Mode (ATM) is a network protocol that is widely 
adopted for use on B-ISDN systems because of its many advantages over STM-
based protocols [5]. The transmission unit in ATM-based networks is the cell. A 
cell is a fixed-length packet of 53 bytes, of which five are reserved for the cell 
header. The fifth byte of the header is a cyclic redundancy check (CRC) 
calculated from the other four bytes and used to detect the presence of error in 
the header. The cell format is shown in     Figure 1. 

At every intermediate node the header is checked, and if it is found in error 
the cell is discarded. A cell may also be discarded because of buffer overflow in 
multiplexing and cross-connecting equipment. Many proposals were studied to 
recover the lost cells [1]-[3],[4]. In the system presented in [5] and analyzed in 
detail in [2] the cells to be encoded are arranged in a matrix consisting of M-1 
rows and N-1 columns of data cells. Each column is terminated by a parity 
check cell obtained by mod-2 addition of the M-1 cells in that column. In this 
scheme, one lost cell per column can be recovered.  

 The location of the lost cells in the sequence of received cells can be 
identified by examining the cell sequence number (SN) of the received sequence 
which is already allocated for as a part of the payload in standard cell format. In 
some applications only important data cells are protected against loss. It follows 
that data cells in a row may not be consecutive in their sequence numbers, thus 
necessitating the advent of another reference to discover the lost cells. In these 
applications a special cell, called the cell loss detection (CLD) cell is appended 
to each row. The CLD cell carries  the sequence numbers of the M-1 data cells 
in the row. Lost cells are identified by checking the sequence numbers of the 
received data cells against the sequence numbers carried by the CLD cell. All 
CLD cells are mod-2 added to produce a CLD check cell, thus enabling the 
decoder to recover one lost CLD cell. 

In this paper we extend the work in [2] by encoding the data cells rowwise 
as well as columnwise. This two-dimensional encoding scheme allows many 
patterns of lost cells to be recovered, resulting in a significant reduction in the 
post-decoding cell loss rate. The rest of the paper is organized as follows. In 
Section 2 the encoding and decoding schemes are explained. Since the locations 
of lost cells are determined first, the decoding process reduces to that of erasure 
correction. The erasure correction capability of the proposed scheme is 
discussed in Section 3. Section 4 presents some analytical and simulation 
results. The performance of the system, in terms of post-decoding cell loss rate 
and processing delay, is compared to the one-dimensional encoding system 
when both systems are utilizing the same redundancy rate (no. of check 
cells/(no. of check cells + data cells)). Conclusions are summarized in Section 5.         

2. Encoding and Decoding  Schemes 
The encoder operates on a matrix of (M-1)×(N-1) data cells to produce an M×N 
matrix of cells. It is worth noting that only the payload segment of the cell is 
processed by the encoder and the decoder. The Mth row contains the parity check 
cells on the columns where each parity check cell is obtained by mod-2 addition 
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Figure 1: ATM cell format 



of the data cells in the same column. In the same way the Nth column contains 
the parity check cells on the rows where each parity check cell is obtained by 
mod-2 addition of the data cells in the same row.  All cells carry the same 
header. The matrix structure is illustrated in Figure 2. 

 

At the destination node the receiver examines the sequence number of the 
arriving cells to determine the lost cells, if any. Lost cells can be identified by 
verifying the sequential sequence of the arriving cells if they have been 
transmitted in sequence, or by checking their sequence numbers against the 
sequence numbers carried by the CLD cells. Once a lost cell is identified, a 
payload of all-zeros will be generated and placed in the correct location in the 
matrix.  

The decoder proceeds as follows. It scans the first row for missing cells. If 
a single missing cell is detected it is then recovered as the mod-2 addition of all 

other cells in that row. If more than one missing cell is detected they are left 
intact. The same process is carried out for the other rows in sequence. After 
scanning all rows the whole process is repeated for the columns. Once this step 
is completed there is a possibility that rowwise decoding can recover some more 
lost cells. Therefore, a third round of decoding along the rows will be carried 
out. It generally improves the correction by excuting more rounds but at the 
expence of increased delay [4]. It is easily seen that these three rounds of 
decoding are sufficient to recover all recoverable patterns of five or less lost 
cells and most of the higher patterns. Therefore, we found three-round decoding 
a good compromise between correction capabilities and decoding delay, and 
hence is adopted here.  

In principle, the decoding can as well be carried out in the reverse 
sequence, i.e. columnwise, rowwise then column-wise. However, by proceeding 
with rows first we eliminate some of the processing delay because rowwise 
decoding can start once a complete row is received and there is no need to wait 
until the whole matrix is constructed. By the time the matrix is fully received, 
the first round of decoding would have been completed. 
 
3. Performance Analysis 
The performance of the proposed scheme is measured in terms of the post-
decoding cell loss probability (PL). We assume that cells are lost at random with 
probability  p. This assumption is also valid for bursts of lost cells with proper 
interleaver/deinterleaver [1]. The post-decoding cell loss probability PL is 
evaluated as: 
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Where Ai is the number of unrecoverable i-erasure patterns (i.e. the number of 
unrecoverable patterns with i lost cells in the matrix). The three-round decoder 
explained above can recover all single-, double- and triple-erasure patterns. That 
is: 

  A1 = A2 = A3 = 0.             (2) 

The only unrecoverable 4-erasure pattern is the rectangular shape, i.e. when the 
four missing cells are located in the same two rows and the same two columns. 

One such pattern is shown in Figure 3. There are ⎟
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Figure 2: Two-dimensional encoding matrix 
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selecting two rows out of M rows. Therefore, 
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Now we move to evaluate A5.  The only unrecoverable 5-erasure patterns are 
those where four of the five erasures form a rectangular shape. For each of the 
A4 patterns there are MN-4 locations for the fifth erasure. Therefore: 
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The above derivations were verified by exhaustive search for moderate values of 
M and N.  

Let’s illustrate the above discussion numerically. Consider the case 

M=N=4. For this matrix size there are a total of ⎟
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patterns of which only A4=36 are unrecoverable, and there are ⎟
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erasure patterns of which A5=432 are unrecoverable. 

For more than five erasures the problem becomes more complicated. We 
will make a worst-case analysis by assuming that all six and higher erasure 
patterns are unrecoverable. That is 
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The above analysis is valid provided that all lost cells can be located. For 
the case where lost cells are identified by examining the sequential sequence of 
the transmitted cells (when all cells are protected), locating lost cells is always 
possible. However when CLD cells are used to identify the missing cells (when 
only important cells are protected), the probability in (1) is valid under the 
condition that all CLD cells are or can be made available. This is equivalent to 
the event that no or only one CLD cell is missing, because the decoder has the 
capability of recovering one lost CLD cell. Denote the probability of this event 
by E. Then: 

       1)1()1( −−+−= MM pppE            (6) 

We will assume that when more than one CLD is missing the decoder will not 
attempt any decoding. Therefore, for  systems relying on CLD to find lost cells, 
Equation (1) should be modified to: 

        )1( EpEPP LL −+×=′                            (7) 
 
4. Results and Discussion 
The proposed two-dimensional recovery scheme was applied to a matrix of size 
M=N=16. The redundancy ratio is 31/(16×16)≈1/8. The proposed scheme was 
compared with the one-dimensional correction scheme in [3]. For fair 
comparison the redundancy ratio has to be equal. To satisfy this requirement we 
took M=N=8 for the one-dimensional scheme. This is equivalent to a 
redundancy ratio of 8/(8x8) =1/8. 

The performance curves for the two schemes are shown in Figures 4 and 5. 
Figure 4 refers to the case when missing cells are identified from the sequential 
sequence while Figure 5 refers to the case when lost cells are identified using  
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Figure 3: Unrecoverable rectangular shape 



 

CLD cells. The superiority of the proposed scheme over the other scheme is 
evident, particularly at low loss rates. The apparent inferiority of the proposed 
system to the other system at larger loss rates (p>10-2) is due mainly to the 
looseness of the bound in (1) at such large values. 

We ought to compare the two schemes in terms of the processing delay. In 
what follows we assume that the dominant delay is that caused be scanning the 
matrix in search for the missing cells, and that the actual encoding and decoding 
time (simple mod-2 addition) is relatively insignificant. We also assume that the 
matrix is square (M=N). 

It is worth noting that for the one-dimensional scheme to be effective in 
recovering the bursts of lost cells, encoding and decoding must be carried out 
column-wise (opposite to the direction of transmission). The one-dimensional 
scheme performs one round of encoding (columnwise) while the two-
dimensional scheme performs two round of encoding (rowwise then 
columnwise). However the rowwise encoding of the two-dimensional scheme 
can be carried out while the matrix is being constructed. As a result there is no 
extra delay added by the two-dimensional encoding scheme.  

At the other end, the one-dimensional scheme requires one round of 
decoding (columnwise) whereas the two-dimensional scheme requires three 
round of decoding: rowwise, columnwise then rowwise. Once again the first 
round rowwise decoding is carried out while the matrix is being reconstructed. 
As a result the two-dimensional scheme requires twice the processing time of 
the one-dimensional scheme. For a moderate matrix size, like the one used here, 
such an increase in delay is not crucial.  
    
5. Conclusions 
A two-dimensional cell recovery scheme was proposes and analyzed. It requires 
two rounds for encoding (rowwise and columnwise) and three rounds for 
decoding (rowwise, columnwise, rowwise). The scheme's capability to recover 
lost cells was discussed, and the performance in terms of post-decoding cell loss 
probability was derived. Though simple, the proposed scheme offers significant 
reduction in cell loss probability over the one-dimensional scheme at a cost of 
slight increase in processing delay. 
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Figure 4: Performance of the two-dimension coding scheme using 
sequential identification 
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Figure 5: Performance of the two-dimensional coding scheme using 
CLD identification 
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