Reliable, Secure and Universal Mobile Radio Communications

Dr. Asrar Sheikh Chair in Telecommunications King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia 31261 asrarhaq@kfupm.edu.sa

Mobile Radio: a brief history

- 1932 Start of Mobile Radio Communications
- 1965 IMTS Improved Mobile Telecommunications Systems
- 1983 1G Analog Systems (AMPS, TACS, NORDIC etc.)
- 1991 2G Digital Systems (DAMPS, GSM, CDMA)
- 2001 3G IMT-2000 (Several variations)
- 2007 3.5G Systems (GPRS, EDGE)
- 2008 4G Systems (Not yet defined)

Current Status

- 3G cellular (IMT-2000) systems designed to offer cellular users a significantly higher data-rates services using wideband (5MHz bandwidth) DS-CDMA technology:
 - indoor: 2Mbps
 - pedestrian: 384kbps
 - vehicular: 144kbps
- Demands for broadband wireless services (internet related) are increasing
- High-speed downlink packet access (HSDPA) of ~14Mbps/5MHz will soon appear. Even ~14Mbps data rate capability of 3.5G will sooner or later become insufficient.

Defining 4G

- Identification of the killer services in the next decade is difficult.
- Internet based services will dominate 4G. The current IEEE 802.11n draft includes link rates up to 600 Mb/s.
- Wireless visual communications: a promising application

	1 G	2G	3 G	4G
Access	Analog	Digital	Digital	Up to 1Gb/sec
	FDMA	TDMA,DS- CDMA	DS-CDMA	OFDM,CDMA
Core network	CS	CS & PS	CS & PS	Broadband IP
Services	Voice	Voice, data	Voice, Video	śśś

G4 Vision – Up to 1Gb/sec Transmission Rate

Towards 4G systems

□ 4G Objectives

- Universality Voice, Data and Video Transmissions
- High Transmission Rate in Packet Mode
- High Capacity and High Spectral Efficiency
- Low latency, streaming Data Transport
- Service Dependent QoS and Security

Communication System and Channel

- Transmitter Blocks
 - Data, Source Coding, Encryption, Coding,
 - Modulation Format & Transmission Strategies
 - QPSK, MPSK, MQAM,
 - CDMA, OFDMA, MIMO, Diversity, etc.
 - Protocols
- Receiver Blocks
 - Diversity, Smart Antennas
 - Demodulation, MUD, ODFM
 - Decoders, Decryption
 - Protocols

Communication System Design Principle

- 8
- Without good insight into mobile radio channel characteristics, an efficient, reliable, secure, and universal communication system cannot be designed.
- All 4G objectives (universality, high speed transmission, security and encryption, and coding for reliability) can be met if channel characteristic is fully understood and exploited.

A Typical Radio Propagation Scenario

Characterizing the Channel

10

A communication channel is completely characterized by its impulse response.

Time-Invariant channel

$$h(\mathbf{r}_{Tx}, \mathbf{r}_{Rx}, \tau, \phi, \psi) = \sum_{l=1}^{L} h_l(\mathbf{r}_{Tx}, \mathbf{r}_{Rx}, \tau, \phi, \psi)$$
Receiver and
transmitter
locations Excess delay,
DOD, and DOA

$$h(\mathbf{r}_{Tx}, \mathbf{r}_{Rx}, t, \tau, \phi, \psi) = \sum_{l=1}^{L} h_l(\mathbf{r}_{Tx}, \mathbf{r}_{Rx}, t, \tau, \phi, \psi)$$

Mobile Radio Channel Impulse Response

The Mobile Radio Channel

- 12
- Path loss signal attenuation over distance
- Random terminal mobility and propagation over irregular terrain makes the mobile radio channel challenging.
 - Radio wave propagation Time spread
 - Reflections, scattering, shadowing, and diffraction cause multipath propagation and time spread.
 - Terminal mobility Frequency Spread
 - Random time variant signal amplitude and phase signal fading characterized statistically.

Path Loss and Tx Power

- Links for 100 Mb/s ~1 Gb/s are severely powerlimited
 - Peak power is proportional to " $f^{2.6} \times R$ "
 - Peak transmission power for 100 Mb/s in 5GHz band is about 135,000 times that of 8 kb/s in 2GHz band, e.g., 1W = 135kW.
 - Cell size should be reduced by about 29 times (e.g., 1,000m → 34m cell)
- Necessity of fundamental change in wireless access network architecture is indicated.

Delay spread and coherence bandwidth – Indoors example

14

- Delay spread varies between 9 nsec to 220 nsec depending on the environment.
- Coherence bandwidth varies between 720 KHz and 17 MHz.
- Data rate dynamically varies as the channel is nonstationary
- Insufficient channel capacity to sustain high speed transmissions of 100 Mb/sec ~ 1 Gb/sec.

High Speed Transmission Strategies

Creating Bandwidth

- Using Signal Processing
 - Interference and multipath cancellation/combining
 - Antenna diversity, equalization, coding
 - CDMA and OFDMA MUD
 - Rake with diversity, equalization and coding
 - Adaptive filtering and adaptive antenna arrays
 - Interference mitigation
- Learning from Conventional techniques of multiplying capacity
 - Multi-input Multi-output (MIMO)
 - MIMO with signal Processing

MIMO - the Capacity Multiplier

Spectral Efficiency of MIMO

Basic assumption

Rich scattering, uncorrelated i.i.d. fading

MIMO and Channel Capacity

Basic Assumptions

Rich scattering, uncorrelated i.i.d. fading

Antonia M. Tulino, Random Matrix Theory and Wireless Communications (2004)

Reliable, Secure, and Universal Mobile Radio Communications © Asrar Sheikh 2008

11/25/2008

Realistic Channel and Capacity

- Realistic Channels
 - Non i.i.d. distributions of the paths
 - Multipath fading instead of flat fading
 - Presence of path correlation
 - Paths may be subjected to correlated or uncorrelated interference
- Impact on Capacity
 - A significant reduction is expected since the condition of independence of paths is violated.
 - To evaluate the impact channel characterization is needed in order to ascertain degree of path correlation, channel multipath profile etc.

Impact of Channel Coupling on Capacity

Capacity of the channel

Characterizing MIMO Channels

21

Physical Channel Models

- Deterministic Physical Models
 - Aim at reproducing actual radio propagation process
 - Example Stored Environment and Ray Tracing
- Geometry Based Stochastic Models
 - Single and Multiple Bounce Scattering
 - Placement of Scatterers in a Deterministic Way
- Non-geometric Stochastic Physical Models
 - Describe paths by statistical parameters only
 - Clusters of MPCs (Saleh-Venzuela) or Individual Paths (Zwick)

Analytical Channel Models

MIMO Channel Matrix

- Correlation Based Analytical Models
 - Multivariate complex Gaussian distribution of MIMO Channel coefficients (Rayleigh, Ricean, Nakagami, etc.)
 - The i.i.d. model simplest model
 - The Kronecker Model
 - The Weichseleberger Model
- Propagation Based Analytical Models
 - Finite Scatterer Model
 - Maximum Entropy Model
 - Virtual Channel Representation

Standardized Models

- COST Models
 - **COST 259/273**
 - COST 259 Directional Channel Model
 - COST 273
- GRADING SCM 300 Sector 300 Sec
 - Calibration Model
 - Simulation Model
- Wireless World Initiative New Radio (WINNER) Channel Models
 - □ IEEE 802.11n
 - SUI Models and IEEE 802.16a

Features Lacking in the Current Models

- Single versus double scattering
- Keyhole effect
- Diffuse multipath components
- Polarization
- Time variation

Research Directions

- Measurements in different environments indoors, outdoors (urban, sub-urban, and rural)
- Analysis of measurement results (impulse response, correlation coefficients) and development of models, and channel matrices.
- Design and implementation of real time channel simulators
- Analysis of MIMO capacity for realistic channels
- Development of signal processing strategies for optimization and capacity enhancement

Research Directions

- Adaptive Techniques modulation, error control, scheduling
- System design in full view of the radio link characteristics and backbone network characteristics – e.g. end to end solutions, error free protocols.