
[Equalization, ver. 1.0] Dr. Ali Muqaibel 

 

Dr. Ali Muqaibel, Digital Communications II Page 1 
 

Equalization  

Contents 
Introduction .................................................................................................................................................. 2 

Classification of equalizers based on ............................................................................................................ 2 

Optimum Receiver for Channels with ISI and AWGN ................................................................................... 3 

Channel modeling ......................................................................................................................................... 3 

Channel Modeling  with Noise Whitening ................................................................................................ 4 

Maximum Likelihood Sequence Equalizer (MLSE) ........................................................................................ 5 

Linear Filters (transversal filter) .................................................................................................................... 5 

How to select the tap coefficients, {𝒄𝒋}? .................................................................................................. 5 

Peak Distortion Criteria ......................................................................................................................... 6 

Minimum Mean Square Error (MSE) Criteria ........................................................................................ 6 

Zero Forcing Equalizer (Peak Distortion Criteria).......................................................................................... 7 

Tolerance to noise (Error Probability Analysis) ..................................................................................... 9 

In class practice: .................................................................................................................................. 11 

Mean Square Error Equalizer ...................................................................................................................... 13 

Finite-length Equalizer ........................................................................................................................ 13 

Example ................................................................................................................................................... 14 

Performance Characteristics of the MSE Equalizer ................................................................................ 16 

Probability of Error Performance of the Linear MSE Equalizer .............................................................. 16 

Conclusion about linear equalizers (ZFE,MSE)  performance ..................................................................... 18 

Decision Feedback Equalizers (DFE) ............................................................................................................ 19 

Motivation............................................................................................................................................... 19 

DFE .......................................................................................................................................................... 19 

Operation ................................................................................................................................................ 19 

Fractionally Spaced Equalizers (FSE) VS Symbol Rate Equalizer (SRE) ........................................................ 21 

Comparison SRE vs FSE ........................................................................................................................... 21 

Baseband & Passband Equalizers................................................................................................................ 22 

Adaptive Equalization ............................................................................................................................. 23 

Method of Steepest Descent .............................................................................................................. 24 

Training Sequence ............................................................................................................................... 26 

Step Size .............................................................................................................................................. 26 

LMS ...................................................................................................................................................... 27 



[Equalization, ver. 1.0] Dr. Ali Muqaibel 

 

Dr. Ali Muqaibel, Digital Communications II Page 2 
 

 

Introduction 
In practice for high-speed communication the channel  𝐶(𝑓) is not known -with sufficient precision- to 
design optimum 𝐺𝑇(𝑓)& 𝐺𝑅(𝑓). For example, for dial-up telephone line,𝐶(𝑓), changes with the dialed # 
(route). Wireless and acoustic channels are even worse as they are time-variant. 

In such cases we may design 𝐺𝑅(𝑓)& 𝐺𝑇(𝑓) such that 

𝐺𝑇(𝑓) = �𝑋𝑟𝑐(𝑓)  𝑒−𝑗2𝜋𝑓𝑡0       |𝑓| ≤ 𝑊 

𝐺𝑅(𝑓) = �𝑋𝑟𝑐(𝑓) 𝑒−𝑗2𝜋𝑓𝑡1       |𝑓| ≤ 𝑊 

Objective: design a receiver that compensate for the channel (distorting +AWGN) which is not known a 
priori to reduce ISI. This compensation is known as Equalizer. Equalizers are filters with adjustable 
parameters to compensate for the chancel distortion. Reducing the complexity is an objective. 

In this module we cover: Maximum Likelihood Sequence Equalizer (MLSE) optimum 𝑃𝑒, Linear 
equalizers, decision Feedback Equalizers (DFE), and their performance. 

Classification of equalizers based on 

Adjustment of Coefficients 
Preset Equalizers: When the channel impulse response is unknown but time-invariant over the time of 
transmission (dial-up systems). The channel characteristics may be measured and used to adjust the 
parameters of the equalizer. (The equalizer coefficients are fixed over the transmission period). 

Adaptive Equalizers: The channel is time-variant. The equalizer updates the parameters on periodic 
basis. 

Structure  
Transversal (tapped-delay-line), Lattice, 
systolic 

Criteria 
MLSE, ZF, LMS, RLS (Kalman), DFE. 

Training 
Trained, Blind, Semi-blind  
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Optimum Receiver for Channels with ISI and AWGN 
Under ISI and AWGN what is the optimum demodulator? Is it still the matched filter? 

The answer is yes. We can prove that by showing that the samples at the output of the matched filter 
are sufficient statistics for estimating {𝐼𝑛}. 

What is the optimum detector? 

It is the maximum likelihood sequence detector as we have seen earlier (for proof see the textbook). 

Channel modeling  
Let 𝑥(𝑡) be the impulse response of the overall channel. 

If the channel is distortionless, then the value of 𝑥(𝑚𝑇) must be impulse: 0 0 0 0…..0 0 0 1 0 0 0… 0 0 0 0 

In the presence of distortion, the channel sampled impulse response is given by (for example) 

𝑥−5 𝑥−4 𝑥−3 𝑥−2 𝑥−1 𝑥0 𝑥1 𝑥2 𝑥3 
0 0.05 0.1 0.2 0.6 1 0 -0.85 0.5 

A convenient mathematical representation of the sampled impulse response is the 𝑧-transform 

𝑋(𝑧) = 0.05𝑧4 + 0.1𝑧3 + 0.2𝑧2 + 0.6𝑧1 + 1 − 0.85𝑧−2 + 0.5𝑧−3 

where 𝑧−1 represents one unit delay. Note that we can control the delay by multiplying by 𝑧−𝑑𝑒𝑙𝑎𝑦. 

Example : if the channel impulse response is given by   

0 0.33 1 0.5 -0.2 -0.1 0.08 0 
 What is the output if the transmitted sequence is  

1 1 -1 1 -1 -1 1 
The output can be found using discrete convolution 

0.33 1 0.5 -0.2 -0.1 0.08       
 0.33 1 0.5 -0.2 -0.1 0.08      
  -0.33 -1 -0.5 +0.2 +0.1 -0.08     
   0.33 1 0.5 -0.2 -0.1 0.08    
    -0.33 -1 -0.5 +0.2 +0.1 -0.08   
     -0.33 -1 -0.5 +0.2 +0.1 -0.08  
      0.33 1 0.5 -0.2 -0.1 0.08 
0.33 1.33 1.17 -0.37 -0.13 -0.65 -1.19 0.52 0.88 -0.18 -0.18 0.08 
 

It is reasonable to assume that ISI affects a finite number of symbols. 
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Channel Modeling  with Noise Whitening 
The overall response 𝑋(𝑧) can be represented as the concatenation of two things: the channel 𝐹(𝑧), 

and the noise-whitening filter  
1

𝐹∗(𝑍−1)
. In that case the zero forcing equalizer must be 

1
𝐹(𝑧). 

The cascade of the noise-whitening filter and the zero forcing equalizer 𝐶′(𝑧) = 1
𝐹(𝑧)𝐹∗(𝑧−1)

= 1/𝑋(𝑧). 

 

Figure: Block diagram of channel with zero- forcing equalizer. 

 

Figure: Block diagram of channel with equivalent zero-forcing equalizer. 

The output will be corrupted with white noise. 

 

Figure  Equivalent discrete-time model of channel with intersymbol interference.  

 

Figure Equivalent discrete-time model of intersymbol interference channel with AWGN.  
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Maximum Likelihood Sequence Equalizer (MLSE)  
• MLSE complexity grows exponentially with channel time dispersion  

(memory). 

• For each symbol 𝑀𝐿+1 computed metrics and 𝑀𝐿survivors are kept.  

• Though very complicated, the performance of MLSE serve as a 
benchmark for comparison. 

Linear Filters (transversal filter)  
Linear complexity with channel dispersion “𝐿” 

Recall that the input to the equalizer is the output of the matched filter, we will assume the noise is 
uncorrelated using WMF (Whitened matched filter)  

 

 

Figure : Linear transversal filter 

The output is the estimate to the information sequence {𝐼𝑘} 

𝐼𝑘 = � 𝑐𝑗𝑣𝑘−𝑗

𝑘

𝑗=−𝑘

 

We are ignoring the quantization effect 𝐼𝑘�  

�𝑐𝑗� are the 2𝑘 + 1 tap weight coefficients 

How to select the tap coefficients, {𝒄𝒋}? 
The most meaningful measure of the performance in digital communications is the Average Probability 

of Error, 𝑃𝑒.  However, the relation between 𝑃𝑒& �𝑐𝑗� is computationally complex. Two other criteria are 

used: 

1. Peak distortion criteria  
2. MSE criteria 

Matched Filter  Noise whitening Filter Sampler 
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Peak Distortion Criteria  
Minimize the worst case intersymbol interference at the output of the equalizer 𝐶′(𝑧) = 1/𝑋(𝑧). 

The cascade of the discrete-time linear filter having an impulse response of {𝑓𝑛} and the equalizer with 
an impulse response {𝑐𝑛} can be represented as a single filter with the following output. 

𝑞𝑛 = � 𝑐𝑗𝑓𝑛−𝑗

∞

𝑗=−∞

 

The peak distortion 

𝐷 = � |𝑞𝑛|
∞

𝑛=−∞,𝑛≠0

= � � � 𝑐𝑗𝑓𝑛−𝑗

∞

𝑗=−∞

�
∞

𝑛=−∞,𝑛≠0

 

The peak distortion criteria neglects noise. 

We will only consider the finite length case.  

The peak distortion criteria has been shown to possess a global minimum and no local minima, we can 
use the method of steepest descent (to be explained later) 

The solution to the minimization problem is known if the normalized peak distortion criteria is less than 
1 (open eye diagram) at the input of the equalizer. 

𝐷0 =
1

|𝑓0|� |𝑓𝑛|
𝐿

𝑛=1

 

The solution is the ZFE with 𝑞0 = 0 𝑓𝑜𝑟 1 ≤ |𝑛| ≤ 𝑘 𝑎𝑑𝑛 𝑞 = 0 𝑓𝑜𝑟 𝑛 = 0 

At the output of the equalizer, notice that {𝑞𝑛} 𝑓𝑜𝑟 𝑘 + 1 ≤ 𝑛 ≤ 𝑘 + 𝐿 + 1  are nonzero (Residual) 

Minimum Mean Square Error (MSE) Criteria 
The MMSE criteria accounts for noise and �𝑐𝑗� coefficients are adjusted to minimize the mean square 

value of the error,  

𝑱 = 𝑬|𝜺𝒌|𝟐 = 𝑬�𝑰𝒌 − 𝑰𝒌� �
𝟐

 

𝐶′(𝑧) = 1
𝑋(𝑧)+𝑁0

.  

Compare the difference between the two criteria for 𝑁0 small and for large values? 
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Zero Forcing Equalizer (Peak Distortion Criteria) 
The idea of zero forcing equalizer (ZFE) is to design the coefficients such that to eliminate the ISI term, 
that is to force ISI to zero 𝑦𝑚 = 𝑥0𝐼𝑚 + ∑ 𝐼𝑛𝑥𝑚 − 𝑛 + 𝑣𝑚𝑚≠𝑛  

From the frequency domain point of view, the overall spectrum of the received signal before detection, 
which is supposed to be 𝑋𝑟𝑐(𝑓) for zero ISI. 

𝐺𝑇(𝑓)𝐶(𝑓)𝐺𝑅(𝑓)𝐺𝐸(𝑓) = 𝑋𝑟𝑐(𝑓)𝐸−𝑗2𝜋𝑓𝑡0  

We designed 𝐺𝑇(𝑓) & 𝐺𝑅(𝑓) such that  

𝐺𝑇(𝑓)𝐺𝑅(𝑓) = 𝑋𝑟𝑐(𝑓)𝑒−𝑗2𝜋𝑓𝑡0 

The requirement for zero ISI is then 𝐶(𝑓)𝐺𝐸(𝑓) = 1 or 𝐺𝐸(𝑓) = 1/𝐶(𝑓) or in the z-domain  

𝐺𝐸(𝑧) =
1

𝐶(𝑧) 

Linear ZFE is linear equalizer is a tapped delay line filter. For symmetry, the total number of taps is 
chosen to be 2𝑘 + 1. With weights denoted by 𝑐−𝑘, … . , 𝑐0, … … 𝑐𝑘  

Then the impulse response of the equalizer 𝑔𝐸(𝑡) = ∑ 𝑐𝑛𝑘
𝑛=−𝑘 𝛿(𝑡 − 𝑛𝑇) 

Let 𝑞(𝑡)denote the equalizer response to the input 𝑥(𝑡): 

𝑞(𝑡) = 𝑥(𝑡) ∗ 𝑔𝐸(𝑡) = � 𝑐𝑛

𝑘

𝑛=−𝑘

𝑥(𝑡 − 𝑛𝑇) 

At the sampling instants 𝑚𝑇 

𝑞(𝑚𝑇) = � 𝑐𝑛𝑥(𝑚𝑇 − 𝑛𝑇)
𝑘

𝑛=−𝑘

 

or 

𝑞𝑚 = ∑ 𝑐𝑛𝑥𝑚−𝑛
𝑘
𝑛=−𝑘 …….(1) 

Hence, comes the zero forcing criteria: 

𝑞𝑚 = �1 𝑚 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

Note that the 𝑞𝑚has 2𝑘 + 𝐿 non-zero terms , in general. 

This is obvious since ∑ 𝑐𝑛𝑥𝑚−𝑛
𝑘
𝑛=−𝑘   repsresents the discrete convolution of C (2𝑘 + 1) terms and x (𝐿 ) 

terms . But since we have 2𝑘 + 1 equalizer coeffenceits, we can control only 2𝑘 + 1 sampled values of 

𝑞(𝑡). That is 𝑞𝑚 = �1 𝑚 = 0
0 𝑚 = ±1, ±2, … . . ±𝑘

�………..(2) 
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It is generally impossible to eliminate the ISI completely at the output of the equalizer. 

Equation (1) ,under constrains (2)may be put in matrix form : 

𝑿𝑪 = 𝒒 

where 𝑿 = �

𝑥0 𝑥−1
𝑥1 𝑥0

… 𝑥−2𝑘
… …

⋮
𝑥2𝑘 𝑥0

� a (2𝑘 + 1)(2𝑘 + 1)matrix   𝑪 =

⎣
⎢
⎢
⎡
𝑐−𝑘
⋮
𝑐0
⋮
𝑐_𝑘⎦

⎥
⎥
⎤
  and 𝒒 =

⎣
⎢
⎢
⎡
0
⋮
1
⋮
0⎦
⎥
⎥
⎤
 

Example 

The channel sampled response is given by 0.1 , 1,−0.2  corresponding to (𝑥−1,𝑥0, 𝑥1) 

a) Determine the coefficients of a three tap ZFE. 

�
1 0.1 0

−0.2 1 0.1
0 −0.2 1

� �
𝑐−1
𝑐0
𝑐1
� = �

0
1
0
� 

Solving the above matrix equation 

𝑐−1 = −
5

52
, 𝑐0 =

50
52

, 𝑐1 =
10
52

 

% Dr. Ali Hussein Muqaibel 
% EE573  
% Equalization 
clear all 
close all 
% Zero Forcing Example 
X=[ 1       0.1     0; 
    -0.2    1       .1; 
    0       -0.2    1]; 
q=[0 1 0]'; 
C=inv(X)*q 

 -0.0962  0.9615  0.1923 

b) Find 𝑞𝑚 (after equalization). 

𝑞𝑚 = � 𝑐𝑛𝑥𝑚−𝑛

1

𝑘=−1

 

By necessity 𝑞1 = 𝑞−1 = 0, 𝑞0 = 1  (check) 

𝑞−2 = 𝑐−1𝑥−1 + 𝑐0𝑥−2 + 𝑐1𝑥−3 = −
0.5
52

 

𝑞2 = 𝑐−1𝑥3 + 𝑐0𝑥2 + 𝑐1𝑥1 = −
2

52
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𝐿 − 1 terms are left nonzero 

The impulse response before equalization  

 

After  equalization 

 

Tolerance to noise (Error Probability Analysis) 
 Let us illustrate this by means of the example given above  

Remember that for a binary PAM: 

𝑃𝑒 = 𝑄��
𝑑2

𝜎2
� = 𝑄 �

𝑆𝑖𝑔𝑛𝑎𝑙 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑎𝑡 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
√𝑛𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

� 

𝑦𝑚 = −0.2𝐼𝑚−1 + 𝐼𝑚 + 0.1𝐼𝑚+1 + 𝑣𝑚 

What are the possible outcomes, relative to 𝐼𝑚? 

𝐼𝑚−1 𝐼𝑚+1 𝑦𝑚 𝑃 
−𝐼𝑚 −𝐼𝑚 1.1𝐼𝑚 + 𝑣𝑚 ¼ 
−𝐼𝑚 +𝐼𝑚 1.3𝐼𝑚 + 𝑣𝑚 ¼ 
+𝐼𝑚 −𝐼𝑚 0.7𝐼𝑚 + 𝑣𝑚 ¼ 
+𝐼𝑚 +𝐼𝑚 0.9𝐼𝑚 + 𝑣𝑚 ¼ 

 

𝑃𝑒 =
1
4 �
𝑄 �

1.1𝑑
𝜎𝑣

� + 𝑄 �
0.7𝑑
𝜎𝑣

� + 𝑄 �
1.3𝑑
𝜎𝑣

� + 𝑄 �
0.9𝑑
𝜎𝑣

�� 

Considering the worst case bound 

𝑃𝑒 >  𝑄 �
0.7𝑑
𝜎𝑣

� 

After equalization 𝑦𝑚 = 𝐼𝑚 + 𝑣𝑚 (neglecting the residual term) but the noise after equalization is 
correlated ad and the above is not true. 

What is the variance of the noise samples after equalization? 𝜎𝑢2 

𝑢𝑚 = � 𝑐𝑛𝑣𝑚−𝑛

𝑘

𝑛=−𝑘
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𝐸[𝑢𝑚] = � 𝑐𝑛𝐸[𝑣𝑚−𝑛] = 0
𝑘

𝑛=−𝑘

 

𝜎𝑢2 = 𝐸[𝑢𝑚2 ] = � � 𝑐𝑛𝑐𝑙𝐸[𝑣𝑚−𝑛𝑣𝑚−𝑙]
𝑘

𝑙=−𝑘

𝑘

𝑛=−𝑘

 

But 𝐸[𝑣𝑚−𝑛] = 0 𝑓𝑜𝑟 𝑚 ≠ 𝑛 

𝜎𝑢2 = �𝑐𝑛2𝐸[𝑣𝑚−𝑛
2 ] = 𝜎𝑣2 � 𝑐𝑛2

𝑘

𝑛=−𝑘

𝑘

𝑛=𝑘

 

For the above example 𝜎𝑢2 = 0.9𝜎𝑣2 

𝑃𝑒 = 𝑄 �
𝑑

√0.9𝜎𝑣
 � = 𝑄 �

1.05𝑑
𝜎𝑣

� 

This might look better than the ideal channel but remember that the channel taps are not normalized 
(sum of square of channel taps should be 1) and alos the residual is ignored. 

Exercise: check the peak distortion criteria before and after equalization for the previous example 

Recall from the introduction to ZFE, even though the equalizer eliminates the ISI, but the noise variance 
at the output of the ZFE is , in general, higher than the noise variance at the output of the optimum 
receiver filter |𝐺𝑅(𝑓)| for the case in which the channel is known. 

Peak distortion criteria: 

Weakness of ZFE 

By forcing the ISI to zero (nearly), the ZFE is in essence minimizing the peak distortion: 

𝐷0 =
1

|𝑞0| � |𝑞𝑚|
𝑚≠0

 

Two points must be emphasized about the zero forcing algorithm: 

The algorithm is only optimum in the sense of minimizing 𝐷, only if 𝐷0 < 1. 

The peak distortion criteria and hence the ZFE neglects the noise. 

For the previous example  

𝐷0 𝑏𝑒𝑓𝑜𝑟𝑒 𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 0.3 

𝐷0 𝑎𝑓𝑡𝑒𝑟 𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 0.05 
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The weakness of ZFE is it focuses on ISI and ignores the presence of noise. As a results its use ,ay results 

in significant noise enhancement. We have stated before that 𝐺𝐸(𝑓) = 1
𝐶(𝑓). In the range of frequencies 

where 𝐶(𝑓) is small, the equalizer compensates by lacing a large gain in that frequency range, thus 

greatly enhance the noise. Or from another view point 𝜎𝑛2 = 𝜎2 ∑ 𝑐𝑛2𝑘
𝑛=−𝑘  

If 𝑐𝑛 > 1 the noise variance is increased and degrades the performance of the system. The ZFE is 
suitable for channels with non-sever distortion. 

What should be the best criteria for optimizing the filter coefficients? Since the performance of the 
digitally modulated communications is measured by the average probability of error is highly a nonlinear 
function of {𝑐𝑛}.   A criterion that looks (and proves) to be  a closer to optimum is the one that considers 
minimizing the combined ISI-and-noise effects at the output of the equalizer. It is called the means 
square error (MSE). 

In class practice: 
Binary PAM is used to transmit information over un-equalized linear filter channel. When a=1 is 
transmitted, the noise-free output of the modulator is xm 

0.15 1
0.9 0
0.15 1

0

m

m
m

x
m

otherwise

=
 ==  = −


                                                         

0.1 1
1.2 0
0.1 1

m

m
c m

m

− =
= =
− = −

.  

a linear equalizer was designed by Mr. XYZ with coefficients cm. Mr. XYZ is consulting you to assess his 
equalizer.  

i. Evaluate the equalized system. What is your final recommendation? 

ii. For the un-equalized system, what is the sequence/s that will lead to the worst case interference, 
and what is its probability? 
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Comment about the ZFE 
 

 

 

Figure: Block diagram of channel with equivalent zero-forcing equalizer. 

It should be remembered, however, that the 𝑃𝑒 for the equalizer output is in general, higher than that of 
the optimum receiver when the channel is known and time invariant. Where 

𝜎𝑛2 = � 𝑆𝑛(𝑓)
∞

−∞

|𝐺𝑅(𝑓)|2𝑑𝑓 = � 𝑆𝑛(𝑓)
∞

−∞

�𝑋𝑟𝑐(𝑓)�
|𝐶(𝑓)|   𝑑𝑓 

Because |𝐺𝑅(𝑓)| = |𝑋𝑟𝑐(𝑓)|
1
2

|𝐶(𝑓)|
1
2

. For the equalized case 

𝜎𝑛2 = � 𝑆𝑛(𝑓)
∞

−∞

|𝐺𝑅(𝑓)|2|𝐺𝑅(𝑓)|2𝑑𝑓 = � 𝑆𝑛(𝑓)
∞

−∞

�𝑋𝑟𝑐(𝑓)�
|𝐶(𝑓)|2   𝑑𝑓 

Because |𝐺𝑅(𝑓)| = �|𝑋𝑟𝑐(𝑓)| and 𝐺𝐸(𝑓) = 1
𝐶(𝑓)  for zero forcing equalizer. 

Usually |𝐶(𝑓)| < 1  for some range of frequencies for ZFE. 

The noise variance at the output of the ZFE is in general  higher compared with the optimum receiver 
when the channel is known. 

  



[Equalization, ver. 1.0] Dr. Ali Muqaibel 

 

Dr. Ali Muqaibel, Digital Communications II Page 13 
 

Mean Square Error Equalizer 
�𝒄𝒋� are adjusted to minimize 𝜺𝒌 = 𝑰𝒌 − 𝑰𝒌� . The performance index 

𝑱 = 𝑬|𝜺𝒌|𝟐 = 𝑬�𝑰𝒌 − 𝑰𝒌� �
𝟐

 

𝐼𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑡ℎ𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑦𝑚𝑏𝑜𝑙  

𝐼𝑘�  𝑖𝑠 𝑡ℎ𝑒 𝑘𝑡ℎ𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑟 

Finite-length Equalizer 
The output of the equalizer  

𝐼𝑘� = � 𝑐𝑗𝑣𝑘−𝑗

𝑘

𝑗=−𝑘

 

The MSE for the equalizer with 2𝑘 + 1 taps 

𝐽(𝑘) = 𝐸�𝑰𝒌 − 𝐼𝑘� �
2 = 𝐸 �𝑰𝒌 − � 𝑐𝑗𝑣𝑘−𝑗

𝑘

𝑗=−𝑘

�

2

 

Because 𝜀𝑘 = 𝐼𝑘 − 𝐼𝑘�  

𝐽(𝑘) = 𝐸|𝜀𝑘|2 = 𝐸(𝜀𝑘𝐼𝑘∗) − 𝐸�𝜀𝑘𝐼𝑘∗�� 

To minimize 𝐽(𝑘) we invoke the orthogonality principle in mean square estimation. 

i.e we select the coefficient �𝑐𝑗� to render the error orthogonal to the signal sequence {𝑣𝑘−1∗ } 

𝐸(𝜀𝑘𝑣𝑘−1∗ ) = 0        −∞ < 𝑙 < ∞  in case of infinite length 

Going through detailed proof (see textbook) we conclude that: 

� 𝑐𝑗Γ𝑙𝑗 = 𝜉𝑙   𝑤ℎ𝑒𝑟𝑒 − 𝑘 < 𝑙 < 𝑘
𝑘

𝑗=−𝑘

 

Γ𝑙𝑗 = �𝑥𝑙−𝑗 +𝑁0𝛿𝑙𝑗 |𝑙 − 𝑗| ≤ 𝐿
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

𝜉𝑙 = �𝑓−𝑙
∗ −𝐿 ≤ 𝑙 ≤ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

In matrix Format 𝚪𝑪 = 𝝃 

C: column vector 2𝑘 + 1 taps 

Γ: (2𝑘 + 1)(2𝑘 + 1) Hermitian covariance matrix Γ𝑖𝑗  
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In mathematics, an Hermitian matrix (or self-adjoint matrix) is a square matrix with complex entries that is equal 
to its own conjugate transpose – that is, the element in the i-th row and j-th column is equal to the complex 
conjugate of the element in the j-th row and i-th column, for all indices i and j:  𝑎𝑖𝑗 = 𝑎𝚤𝚥����. 

If the conjugate transpose of a matrix 𝑨 is denoted by 𝑨𝑻, then the Hermitian property can be written concisely as 
𝑨 = 𝑨𝑻 

For example, � 5 3 + 𝑗
3 − 𝑗 1 �…………………..Reference Wikipedia  

𝜉: column vector 2𝑘 + 1      𝜉𝑖  

𝐶𝑜𝑝𝑡 = Γ−1𝜉 

The associated minimum value of 𝐽(𝑘) 

𝐽𝑚𝑖𝑛(𝑘) = 1 − � 𝑐𝑗𝑓−𝑗 = 1 − 𝜉+∗Γ−1𝜉  
0

𝑗=−𝑘

 

And         𝛾 = 1−𝐽min
𝐽min

    SNR 

�
𝑥0 + 𝑁0 𝑥−1
𝑥1 𝑥0 + 𝑁0 𝑥−1

𝑥0 + 𝑁0
��

𝑐−1
𝑐0
𝑐1
� = �

𝑓1∗
𝑓0∗
𝑓−1∗

� 

Example 
Binary PAM is used to transmit info. Over an un-equalized linear filter channel. When 𝑎 = 1 is 

transmitted, the noise-free output of the demodulator is  𝑥𝑚 = �
0.3 𝑚 = 1
0.9 𝑚 = 0

0.3 𝑚 = −1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

Design a 3-tap MSE equalizer. 

Assume that the noise power spectral density is 0.1 W/Hz. 

http://en.wikipedia.org/wiki/Square_matrix�
http://en.wikipedia.org/wiki/Complex_number�
http://en.wikipedia.org/wiki/Conjugate_transpose�
http://en.wikipedia.org/wiki/Complex_conjugate�
http://en.wikipedia.org/wiki/Complex_conjugate�
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Performance Characteristics of the MSE Equalizer 
Both minimum MSE & Probability of error are two performance measures. 

Probability of Error Performance of the Linear MSE Equalizer 
There are some equations for the infinite length equalizer for MSE  𝐽𝑚𝑖𝑛 and output SNR 𝛾 

Without proof 

𝐽𝑚𝑖𝑛 =
𝑇

2𝜋
�

𝑁0

𝑇−1 ∑ �𝐻 �𝜔 + 2𝜋𝑛
𝑇 ��

2
+ 𝑁0∞

𝑛=−∞

𝜋
𝑇

−𝜋/𝑇

 

If no ISI 𝐽𝑚𝑖𝑛 = 𝑁0
𝑁0+1

            0 ≤ 𝐽𝑚𝑖𝑛 ≤ 1 

The required SNR for the infinite number of taps case 

𝛾∞ =
1 − 𝐽𝑚𝑖𝑛

𝐽𝑚𝑖𝑛
 

Infinite length not practical but helpful (limit) 

No simple relation between 𝐽𝑚𝑖𝑛 𝑎𝑛𝑑 𝛾∞𝑎𝑛𝑑 𝑃𝑒 

For the MSE there will be some residual ISI not like the infinity length ZFE. 

The residual cannot be represented as an additional Gaussian noise term and cannot be easily 
represented as 𝑃𝑒. 

We can use similar procedure like we did with the ZFE example. 

𝜎𝑛2 = 𝑁0 � 𝑐𝑗2
𝑘

𝑗=−𝑘

 

To illustrate the performance of MSE see the following three Figures. 

 Binary (antipodal) using Monte Carlo Simulation 

• No ISI is also illustrated. 

• Channel a in the Figure : Typical response of a good quality telephone line. Channels b & c 
represent channels with sever ISI. 

• For linear equalizer; the spectrum response of channel c is very bad (worst spectral 
characteristics). 

• The error rate for channel a is within 3dB of the no interference case. 
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Figure: Error rate performance of linear MSE equalizer. Thirty-one taps in transversal equalizer. 

 

 

Figure Three discrete-time Channel characteristics. 

 

Figure Amplitude spectra for the channels shown in Figure 10.2-5a, b, and c, respectively. 

2
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1
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Conclusion about linear equalizers (ZFE,MSE)  performance 
• Linear equalizers are good for channels with no spectral nulls (telephone lines) (Well behaved 

channels) 
• Linear equalizers are inadequate as compensators for channels with nulls (radio transmission). 

Nulls results in large noise enhancements. 
• This motivates the solution for ISI through nonlinear Decision Feedback Equalizers (DFE). 
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Decision Feedback Equalizers (DFE) 

Motivation 
• Linear equalizers (e.g. ZFE & MMSE): 

o Very effective on channels where the ISI is not severe. 
o Consider the three channels examples. MSE is effective for channel A but not C & B. 

DFE is nonlinear equalizer that employs previous decision to eliminate the ISI caused by previously 

detected symbols on the current symbol to be detected. 

Operation 
• What is the thing that makes DFE nonlinear?  

o The detector. 
• The basic idea is that, assuming past decisions are correct, the ISI contributed by these symbols 

can be completely cancelled by subtracting appropriately weighted past symbols values from 
the equalizer output. 

• Denote the sampled impulse response of the channel by {𝑣𝑘}, which extends from −𝑘1, … . . ,𝑘2 
• The response of the channel to an input sequence {𝐼𝑛} is the convolution: 
 

𝑦𝑚 = � 𝑣𝑛𝐼𝑚−𝑛 = 𝑣0𝐼𝑚 + � 𝑣𝑛𝐼𝑚−𝑛 + �𝑣𝑛𝐼𝑚−𝑛

𝑘2

𝑛=1

−1

𝑛=−𝑘1

𝑘2

𝑛=−𝑘1

 

𝑦𝑚 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑒𝑟𝑚 + 𝐼𝑆𝐼 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 + 𝐼𝑆𝐼 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑜𝑚𝑖𝑛𝑔 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 

𝐼𝑚 = � 𝑣𝑛𝐼𝑚−𝑛 =
𝑦𝑚
𝑣0

− �
𝑣𝑛
𝑣0
𝐼𝑚−𝑛 −�

𝑣𝑛
𝑣0
𝐼𝑚−𝑛

𝑘2

𝑛=1

−1

𝑛=−𝑘1

𝑘2

𝑛=−𝑘1

 

{𝑣𝑛} for 𝑛 = −𝑘1, … … … ,𝑘2 are known (or measured)  

{𝐼𝑚−𝑛} in the middle term are previous symbols. We can assume that these are the outputs of the 
decision device assuming the decision is correct. 

 

Figure. Structure of decision-feedback equalizer 

• {𝐼𝑘� } refers to the previously detected symbols. So we may structure the equalizer 

• All the previous ISI is cancelled.  
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• The post cursors will be taken care off by a feed forward filter. 

• In general a DFE consists of a feed forward filter section and a feedback filter section, for the 
following reason. 

• The input to the feedback filter is subtracted from the output of the feed forward filter to form 
the input to the detector. 

• Of course, an error in making decision will propagate!  

The following figure shows the performance of DFE when used for channel B, the performance is greatly 
improved compared with linear equalizers. 

 

Figure Performance of decision-feedback equalizer with and without error propagation. 

Figure: Comparison of performance between MLSE and decision-feedback equalization for channel 
characteristics shown (a) channel B  (b) in Channel C    
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Fractionally Spaced Equalizers (FSE) VS Symbol Rate Equalizer (SRE) 
 

Symbol rate equalizer (SRE): the equalizer taps are spaced at 1/T (symbol rate) 

Optimum if equalizer is preceded a filter matched to the channel distorted transmitted pulse. If not 
known receiver is matched to the transmitted pulse & sampling time is optimized. The overall 
performance is sensitive to the choice of sampling time. 

Fractionally spaced equalizer (FSE): is based on sampling the incoming symbol at least as fast as Nyquist 
rate.  

𝐹𝑚𝑎𝑥 = 1+𝛽
2𝑇

.  Nyquist rate is twice the highest frequency 2𝐹𝑚𝑎𝑥 = 1+𝛽
𝑇

, Time is inversely related to 

frequency and  tap spacing is 
𝑇

1+𝛽
 

𝛽 = 1 𝑚𝑒𝑎𝑛𝑠
𝑇
2

 𝑠𝑝𝑎𝑐𝑒𝑑 𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑟 

𝛽 = 0.5 𝑚𝑒𝑎𝑛𝑠 2
3
𝑇 𝑠𝑝𝑎𝑐𝑒𝑑 equalizer 

Tap spacing is 
𝑀𝑇
𝑁

  where 𝑀 and 𝑁 are integers with 𝑁 > 𝑀. 

The objective of fractionally spaced equalizers is to avoid aliasing. 

Optimum FSE is equivalent to the optimum linear receiver consisting of the matched filter (to the 
distorted signal) followed by a symbol rate equalizer.  

Comparison SRE vs FSE 
FSE show better performance & less sensitivity to timing phase. 

 

Is the comparison fair?  # of taps or spanned time? 
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Baseband & Passband Equalizers 
Practical implementation could be baseband or passband. The advantage of implementing an equalizer 
in passband is timing and phase advantage) 

 

Figure QAM and PSK signal demodulator with baseband equalizer. 

 

Figure . QAM or PSK signal equalization at passband. 
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Adaptive Equalization 
Motivated by time varying channels. 

The tap coefficients of the zero forcing equalizers can be obtained by solving the matrix : 

𝑿𝑪 = 𝒒 

Similar equation can be used to obtain those of MMSE 

𝚪𝑪 = 𝝃 

Let us define the general form: 

𝑩𝑪 = 𝒅 

then  

𝑪𝒐𝒑𝒕  = 𝑩−𝟏𝒅 

In practical implementation of equalizers, the optimum coefficients are obtained by an an iterative 
procedure to avoid computing 𝐵−1. 

This is in particular necessary when the channel is time-variant; hence the entries of B and d (for MSE) 
vary. 

The simplest iterative procedure is the method of Steepest Descent. The discussion below refers to the 
MSE adaptive equalizer since it is the most widely used. 

The MSE expression is a second order function of the coefficients 𝐶−𝑘, … . . ,𝐶0, … … . ,𝐶𝑘. It can be 
visualized as (2𝑘 + 1)-dimensional bowl shaped surface. 

The adaptive process through successive adjustments of tap coefficients has the task of continuously 
seeking the bottom of the bowl.  “shape is changing” 
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Method of Steepest Descent  
(1) Begin by selecting arbitrary the vector 𝐶, say 𝐶0. 
(2) Find the gradient vector 𝐺0  which is the derivative of the MSE with respect to the 2𝑘 + 1 

coeffeceints 
𝐺0 = 𝐵𝐶0 − 𝑑 

𝐺𝑘 =
1
2
𝑑𝐽
𝑑𝐶𝑘 

= Γ𝐶𝑘 − 𝜉 = −𝐸(𝜀𝑘𝑣𝑘∗) 

Where 𝜀𝑘 = 𝐼𝑘 − 𝐼𝑘�  

𝑣𝑘: is the vector of received signal samples that make up the estimates 𝐼𝑘�  

(3) Modify the tap coefficient such that 
𝐶1 = 𝐶0 − Δ𝐺0  or in general 𝑪𝒌+𝟏 = 𝑪𝒌 − Δ𝑮𝒌 

Where Δ is the step size parameter for the iterative process. We will discuss its rule later. 

(4) Repeat (2)  and (3). At the kth iteration, the process continues until 𝑮𝒏 → 𝟎 and 𝑪𝒌 →  𝑪𝒐𝒑𝒕,     K 
is the number of iterations. 
 
The equalizer coefficients are thus updated at the symbol rate T 
(Figure might be wrong and check chapter # for adaptive equalization) 

 
 
 
 

• Steepest decent algorithm is a gradient based method which employs recursive solution over 
problem (cost function) 
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• The current equalizer taps vector is C(n) and the next sample equalizer taps vector weight is 
C(n+1), We could estimate the C(n+1) vector by this approximation: 

𝐶[𝑛] = 𝐶[𝑛 + 1] + 0.5𝜇(−∇𝐽[𝑛]) 

• The gradient is a vector pointing in the direction of the change in filter coefficients that will 
cause the greatest increase in the error signal. Because the goal is to minimize the error, 
however, the filter coefficients updated in the direction opposite the gradient; that is why the 
gradient term is negated.  

• The constant μ is a step-size. After repeatedly adjusting each coefficient in the direction 
opposite to the gradient of the error, the adaptive filter should converge.  

 Example 

Given the following function we need to obtain the vector that would give us the absolute 

minimum. 𝑌(𝑐1, 𝑐2) = 𝐶12 + 𝐶22. It is obvious that 𝐶1 = 𝐶2 = 0, give us the minimum. Find the 
solution by the steepest descend method. 

 

• We start by assuming (𝐶1  =  5,𝐶2  =  7) 

• We select the constant . If it is too big, we miss the minimum. If 
it is too small, it would take us a lot of time to het the minimum. 
I would select    𝜇 = 0.1 . 

• The gradient vector is: 1 1

2

2

2
2

dy
dc C

y
dy C
dc

 
    ∇ = =     
 
 

 

• So our iterative equation is: 

1 1 1 1 1

2 2 2 2 2[ 1] [ ] [ ] [ ] [ ]

0.05 0.1 0.9
n n n n n

C C C C C
y

C C C C C
+

         
= − ∗∇ = − =         

           

 

1

2

1

2

1

2

5
1:

7

4.5
2 :

6.3

0.405
3:

0.567

C
Iteration

C

C
Iteration

C

C
Iteration

C

   
=   
  

   
=   
  

   
=   
  

  

y 

C1 

C2 

C1 

C2 

y 
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1

2

1

2 [ ]

......
0.01

60 :
0.013

0
lim

0n
n

C
Iteration

C

C
C→∞

   
=   
  

   
=   
  

 

As we can see, the vector [c1,c2] converges to the value which would yield the function minimum and 
the speed of this convergence depends on     . 

Training Sequence 
The coefficients updating algorithm is based on calculating 

𝑒𝑘 = 𝐼𝑘 − 𝑧𝑘� 

𝐼𝑘is assumed to be correctly decoded. But in fact we are using 𝑒𝑘 = 𝐼𝑘� − 𝑧𝑘 

 In practice to help the equalizer to adjust coefficients at the beginning of the process (and from time to 
time), it is trained by the transmission of a known PN sequence {𝐼𝑘}, over the channel. The equalizer is 
said to be in training mode. After that it shifts to the decision-direct mode. 

Step Size 
A crucial parameter for the convergence of the algorithm is the step-size.  

 

Figure Initial convergence characteristics of the 
LMS algorithm with different step sizes. [From 
Digital Signal Processing, by J. G. Proakis and D. 
G.  Manolakis, 1995, Prentice Hall Company. 
Reprinted with permission of the publisher. 

From the figure we note the following: 

Δ = 0.115  cause the algorithm not to converge 

Δ = 0.09  It converges in 100 iterations 

Δ = 0.045  The convergence is slowed (300 
iterations) but a lower MSE is achieved, 
indicating that the estimated coefficients are 
close to optimum. 
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In some research papers, rules of thumbs and limit for selecting the step size are give. 

LMS 
0 < Δ < 2/𝜆𝑚𝑎𝑥 

|1 − Δ𝜆𝑚𝑎𝑥| < 1  where 𝜆 = −𝑘, … . .𝑘 

Where {𝜆𝑘} is the set of 2𝑘 + 1 (possibly non-distinct) Eigen values of Γ.  𝜆𝑘 > 0 for all 𝑘 

Blind equalization: “no training sequence” 

What is semi-blind equalization? (find out) 

MSE: mean square error “cost” 

MMSE: minimum mean square error “criteria” 

LS: least squares “algorithm” requires matrix inversion (non iterative) 

MLS: minimum least square “algorithm” iterative, avoid matrix inversion. 

 


