Signal Design for Bandlimited Channels

Contents
Introduction and System Model ... 2
Eye Pattern: ... 2
Practice Problem ... 3
Distortionless Bandlimited Channel .. 3
Design of Bandlimited Signals for zero ISI-The Nyquist Criteria ... 4
Nyquist Pulse-Shaping Criterion or Nyquist Criterion for Zero ISI .. 5
Three important cases .. 6
Case I ... 6
Case II .. 7
Case III ... 8
Example ... 8
Design of Bandlimited Signals with Controlled ISI Partial-Response Signals .. 11
Duo-binary Signal: ... 11
Modified Duo-binary Signal .. 12
Data Detection for Controlled ISI .. 14
Extension for multilevel PAM: (duobinary).. 15
For modified duobinary: ... 16
Conclusion about symbol by symbol detection: ... 16
Maximum Likelihood Sequence Detection ... 17
Viterbi Algorithm ... 17
Example (MLS) .. 20
Signal Design for Channels with Distortion... 21
Scenario #1: Pre-compensation for the total Channel distortion at the transmitter 21
Scenario #2: Compensation is equally divided between the transmitter and the receiver filters 22
Example ... 23
Probability of Error in detection of PAM .. 24
Probability of Error Detection for PAM with Zero ISI .. 24
Probability of Error Partial Response signals .. 24
Pe in Symbol-by-symbol detection for controlled ISI .. 25
Pe in Max-Likelihood sequence detection for controlled ISI ... 25
Introduction and System Model

The transmitted sequence is $v(t) = \sum_{n=0}^{\infty} i_n g(t - nT)$

This is the equivalent low pass of $s(t)$

The received sequence is $r(t) = \sum_{n=0}^{\infty} i_n h(t - nT) + z(t)$

Where $h(t) = c(t) \ast g(t)$

$C(f) and G(f) = 0 for |f| > W$

First: design $g(t)$ with no channel distortion (only band limitation)

Second: design $g(t)$ with channel distortion.

ISI: is intersymbol interference (time dispersion in the sampling instances) due to band limitation.

We would like to get zero ISI. We can get that with

1) **Signal design** if the channel is not distorting.
2) **Equalization** if the channel is distorting.
3) **Adaptive equalization** if the channel is time-varying (distorting).

Eye Pattern: Synchronized superposition of all possible realizations of the signal of interest (receiver output) viewed within a particular signaling interval.
Practice Problem

Sketch the eye diagram given the following values: (Proper scale)

- Distortion of zero crossing = 10 μs.
- Time interval over which the received signal can be sampled = 100 μs.
- Margin over noise = 4 V.
- Distortion at sampling time = 1 V.

Approximately, what is the Sensitivity to timing error?

Distortionless Bandlimited Channel

\[C(f) = |C(f)|e^{-j\phi(f)}, \text{ has a constant amplitude and linear phase for } |f| \leq W \]

Assuming matched filter, the output of the matched filter is

\[y(t) = \sum_{n=0}^{\infty} I_n x(t - nT) + v(t) \]
\[x(t) = h(t) * g_R(t) \quad \text{and} \quad v(t) = z(t) * g_R(t) \]

The output at the sampling times \(t = kT + \tau_0, k = 0,1, \ldots \)

\[y(kT + \tau_0) = \sum_{n=0}^{\infty} l_n x(kT + \tau_0 - nT) + v(kT + \tau_0) \]

where \(\tau_0 \) is the transmission delay through the channel.

To simplify the notation

\[y_k = \sum_{n=0}^{\infty} l_n x_{k-n} + v_k, \quad k = 0,1,2, \ldots \]

\[= x_0 I_k + \sum_{n=0}^{\infty} l_n x_{k-n} + v_k, \quad k = 0,1,2, \ldots \]

We may set \(x \) as 1 for simplicity

\[y_k = I_k + \sum_{n=0}^{\infty} l_n x_{k-n} + v_k, \quad k = 0,1,2, \ldots \]

Desired term + ISI + additive noise (zero mean, variance=\(N_0/2E_h \))

Two distortions are caused by ISI:

a) The eye closes => less noise margin => higher probability of error.

b) Distort the zero crossing => Synchronization errors.

Design of Bandlimited Signals for zero ISI-The Nyquist Criteria

To remove ISI in time domain we require

\[x(mT - nT) = 0 \ for \ m \neq n \]

and

\[x(0) \neq 0, \ (m = n) \]

Assuming matched filter & ideal channel \(C(f) = 1 \ for \ |f| < W \)

The pulse \(x(t) \) has a spectral characteristics

\[X(f) = |G(f)|^2 \quad x(t) = \int_{-W}^{W} X(f) e^{j2\pi ft} df \]

If we know \(x(t) \), we can find \(g(t) \) the transmitted pulse.
Nyquist Pulse-Shaping Criterion or Nyquist Criterion for Zero ISI

The necessary and sufficient condition for \(x(t) \) to satisfy \(x(nT) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases} \)

is that its Fourier transform \(X(f) \) satisfy \(\sum_{m=-\infty}^{\infty} X\left(f + \frac{m}{T}\right) = T \)

Proof:

\[
x(t) = F^{-1}[X(f)]
\]

\[
x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df
\]

At the sampling instances

\[
x(nT) = \int_{-\infty}^{\infty} X(f)e^{j2\pi fnT}df
\]

Break the integral into finite range \(1/T \) & sum

\[
x(nT) = \sum_{m=-\infty}^{\infty} \int_{\frac{2m+1}{2T}}^{\frac{2m-1}{2T}} X(f)e^{j2\pi fnT}df
\]

Rather than shifting the limits we are shifting the signal and fixing the limits (not perfect)

To be more precise, we do variable change \(f' = f - \frac{m}{T} \Rightarrow f = f' + \frac{m}{T} \)

Integration limits, lower limit \(f = \frac{m}{T} - \frac{1}{2T} \Rightarrow f' = -\frac{1}{2T} \)

Upper limit \(f = \frac{m}{T} + \frac{1}{2T} \Rightarrow f' = +\frac{1}{2T} \)

Function becomes \(X(f') = X\left(f' + \frac{m}{T}\right) \)

And the exponent \(e^{j2\pi fnT} = e^{j2\pi(f' + \frac{m}{T})nT} = e^{j2\pi fnT} \), because shifting to multiples of \(2\pi \) has no effect.

Recalling \(f' \) as \(f \)

\[
x(nT) = \sum_{m=-\infty}^{\infty} \int_{\frac{1}{2T}}^{\frac{1}{2T}} X\left(f + \frac{m}{T}\right)e^{j2\pi fnT}df
\]
\[x(nT) = \int_{-1/2T}^{1/2T} \left[\sum_{m=-\infty}^{\infty} X(f + \frac{m}{T}) \right] e^{j2\pi fnT} df \]

\[x(nT) = \int_{-1/2T}^{1/2T} B(f) e^{j2\pi fnT} df \] \[\text{(1)}\]

where \(B(f) = \left[\sum_{m=-\infty}^{\infty} X(f + \frac{m}{T}) \right] \)

\(B(f) \) is periodic with period \(1/T \). It can be represented using Fourier coefficients \(\{b_n\} \) as

\[B(f) = \sum_{n=-\infty}^{\infty} b_n e^{2\pi n f T} \] \[\text{(2)}\]

where \(b_n = T \int_{-1/2T}^{1/2T} B(f) e^{-j2\pi nfT} df \) \[\text{(3)}\]

Note: we are used to do that in the time domain but it is just a dummy variable.

Comparing (1) and (3)

\[b_n = Tx(-nT). \] \[\text{The necessary and sufficient conditions in terms of} \ b_n \]

\[b_n = \begin{cases} T & n = 0 \\ 0 & n \neq 0 \end{cases} \]

Now in terms of \(B(f) \) from equation (2)

\[B(f) = T \]

In terms of \(X(f) \)

\[\sum_{m=-\infty}^{\infty} X\left(f + \frac{m}{T}\right) = T \]

This is the condition for zero ISI.

Three important cases

For the ideal band limited channel, we distinguish three cases.

Case I \(T < \frac{1}{2W} \) or \(\frac{1}{T} > 2W \) (Transmission >2W)

\(B(f) \) consists of non-overlapping replicas of \(X(f) \). There is non-overlapping replicas of \(X(f) \)

No chance for \(X(f) \) to make

\[\sum_{m=-\infty}^{\infty} X\left(f + \frac{m}{T}\right) = T \]

No-way to design the system for zero ISI & transmission rate>2W
Case II

\[T = \frac{1}{2W} \text{ or } T = 2W \text{ (Nyquist rate)} \]

There exists only one \(X(f) = \begin{cases} T & |f| < W \\ 0 & \text{otherwise} \end{cases} \)

\[X(f) = T \text{rect} \left(\frac{f}{2W} \right) \Rightarrow x(t) = \text{sinc} \left(\frac{\pi t}{T} \right) = \text{sinc}(2W\pi t) \]

Note some textbooks define \(\text{sinc}(x) = \sin(\pi x)/x \) & some others \(\text{sinc}(x) = \sin(x)/x \)

Difficulty with sinc:

A) non causal (non-realizable): can be reduced by using a delayed version of sinc

\[\text{sinc} \left(\frac{t-t_0}{T} \right) \approx 0 \text{ for } t < 0, \text{ sampling is also shifted to } mT + t_0 \]

B) rate of decay (convergence) \(1/t \)

C) Synchronization?
Case III \[T > \frac{1}{2W} \]

\(B(f) \) Consists of overlapping replicas separated by \(1/T \). We have numerous choices (symmetry)

\[
\sum_{n=\infty}^{\infty} X(f + n/T)
\]

Raised cosine (desirable spectral properties, used in practice widely)

\[
X_{rc}(f) = \begin{cases}
\frac{T}{2} \left(1 + \cos \left(\frac{\pi T}{\beta} \left(|f| - \frac{1 - \beta}{2T} \right) \right) \right) & 0 \leq |f| \leq \frac{1 - \beta}{2T} \\
0 & \frac{1 - \beta}{2T} \leq |f| \leq \frac{1 + \beta}{2T} \\
& |f| > \frac{1 + \beta}{2T}
\end{cases}
\]

\(\beta \) roll-off factor \(0 \leq \beta \leq 1 \)

\(\beta \) is proportional to excess bandwidth (bandwidth beyond \(\frac{1}{2T} \)) & usually is represented as percentage of the Nyquist freq

Example

\(\beta = \frac{1}{2} \Rightarrow \) Excess bandwidth 50%

\(\beta = 1 \Rightarrow \) Excess bandwidth 100%

Raised cosine \(x(t) = \frac{\sin(\frac{\pi t}{T})}{\frac{\pi t}{T}} \cdot \frac{\cos(\frac{\pi \beta t}{T})}{1 - \frac{4\beta^2 t^2}{T^2}} \)

\(x(t) \) is normalized

\(x(0) = 1 \)

In general, decay factor \(\frac{1}{t^3} \) timing errors. Converges to a finite value. (correct the book \(\beta > 0 \))

Zero crossing in between.
For the ideal case $C(f) = 1$ for $|f| \leq W$

$$X_{rc}(f) = G_T(f)G_R(f)$$

$G_T(f)$: frequency response of transmit filter

$G_R(f)$: frequency response of receive filter

If the receiver filter is matched to the Tx

$$G_T(f)G_R(f) = |G_T(f)|^2$$

$$G_T(f) = \sqrt{|X_{rc}(f)|}e^{-j2\pi ft_0}$$

$$G_R(f) = G_T^*(f)$$

$$G_R(f) = \sqrt{|X_{rc}(f)|}e^{-j2\pi f(t_0+t_1)}$$

t_0 is the nominal delay to ensure realizability of the filter

The overall raised cosine spectral characteristics is split evenly between the Tx filter & the Rx filter (root raised cosine)

The bandwidth and rate relation will change to $BW = (1 + \beta)R/2$ for baseband and $BW = (1 + \beta)R$ for Passband.

Very important Matlab demos /Communications Toolbox

1) Eye Diagram
2) Raised Cosine filtering
Practice Example: Baseband Pulse Transmission

An analog signal is sampled, quantized, and encoded into a binary PCM wave. The number of quantization levels used is 128. A synchronizing pulse is added at the end of each code word representing a sample of the analog signal. The resulting PCM wave is transmitted over a channel of bandwidth 12 kHz using a 16-ary PAM system with raised-cosine spectrum. The roll-off factor is 0.5.

(a) Find the rate (bits/sec) at which information is transmitted through the channel.

(b) Find the rate at which the analog signal is sampled. What is the maximum possible value for the highest frequency component of the analog signal?
Design of Bandlimited Signals with Controlled ISI Partial-Response Signals

We have reduced the rate to realize practical zero ISI. Can we achieve zero ISI with a rate = 2W? The answer is yes with controlled ISI.

Duo-binary Signal:

\[
x(nT) = \begin{cases}
1 & n = 0,1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
b_n = \begin{cases}
T & n = 0, n = -1 \\
0 & \text{otherwise}
\end{cases}
\]

Recall \(b_n = T x(-nT) \)

\[
B(f) = T + T e^{-j2\pi f T}
\]

Recall \(B(f) = \sum_{n=-\infty}^{\infty} b_n e^{j2\pi f T} = \sum_{n=-\infty}^{\infty} X(f + \frac{m}{T}) \)

This cannot be satisfied for \(T < \frac{1}{2W} \)

For \(T = \frac{1}{2W} \)

\[
X(f) = \begin{cases}
\frac{1}{2W} (1 + e^{-j\pi f W}) & |f| < W \\
0 & \text{otherwise}
\end{cases}
\]

\[
= \frac{1}{W} e^{-j\pi f 2W} \cos \left(\frac{\pi f}{2W} \right) & |f| < W \text{ otherwise}
\]

For which

\[
x(t) = \text{sinc} \left(2\pi W t \right) + \text{sinc} \left[2\pi \left(Wt - \frac{1}{2} \right) \right]
\]

Frequency response of the duo-binary conversion filter. (a) Magnitude response. (b) Phase response
Modified Duo-binary Signal

Zero DC

\[
x \left(\frac{n}{2W} \right) = x(nT) = \begin{cases}
1 & n = -1 \\
-1 & n = 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
x(t) = \text{sinc} \left(\frac{\pi(t + T)}{T} \right) - \text{sinc} \left(\frac{\pi(t - T)}{T} \right)
\]

Its spectrum

\[
X(f) = \begin{cases}
\frac{1}{2W} \left(e^{j\pi f} - e^{-j\pi f} \right) & |f| \leq W \\
0 & |f| > W
\end{cases}
\]

Frequency response of the modified duobinary conversion filter. (a) Magnitude response. (b) Phase response.
Impulse response of the modified duo-binary conversion filter (delayed one symbol).

In general:

- We may select different values for the other controlled ISI.
- We also may consider more samples. Why not? Difficult to unravel.
Data Detection for Controlled ISI

1) Symbol by symbol (relatively easy)
2) Maximum-likelihood criterion (minimize Probability of error (more complex))

We concentrate on PAM,

Assume \(|G_T(f)| = |G_R(f)| = |X(f)|\)

Symbol by symbol suboptimum detection

\(x(nT) = 1 \text{ for } n = 0,1 \text{ and zero otherwise}\)

At the output of the receiver filter (demodulator)

\(y_m = B_m + v_m = I_m + I_{m-1} + v_m\)

\(I_m\) is transmitted seq.
\(v_m\) samples of additive Gaussian noise (not white)

Let \(I_m = \pm 1\) with equal probability

\[
\begin{align*}
B_m &= -2, 0, 2 \\
\text{Prob.} &= \frac{1}{4}, \frac{1}{2}, \frac{1}{4}
\end{align*}
\]

If one symbol is detected subtract its contribution from the next symbol. Error is reinforced by incorrect subtraction (Error Propagation). To avoid error propagation (Precoding) is used

\(\{D_n\}\) Data sequence 0…..1
\(\{P_n\}\) precoded sequence

\[
P_m = D_m - P_{m-1}, \ m = 1,2, \ldots
\]

where – is module 2 subtraction. Like addition but more illustrative

Then \(I_m = -1 \text{ for } P_m = 0\)

\[
\begin{align*}
I_m &= 1 \text{ for } P_m = 1 \\
I_m &= 2P_m - 1
\end{align*}
\]

Noise free samples at the output of the receiver filter

\[
B_m = I_m + I_{m-1}
\]

\[
= (2P_m - 1) + (2P_{m-1} - 1) = 2(P_m + P_{m-1} - 1)
\]

\[
P_m + P_{m-1} = \frac{1}{2}B_m + 1
\]

\[
D_m = P_m + P_{m-1} = \frac{1}{2}B_m + 1
\]

Thus

\[
B_m = \pm 2 \text{ means } D_m = 0 \\
B_m = 0 \text{ means } D_m = 1
\]
Easy decoding

For noisy data, we may use threshold decoding

\[D_m = \begin{cases} 1 & |y_m| < 1 \\ 0 & |y_m| \geq 1 \end{cases} \]

\(D_m \)	1	1	1	0	1	0	0	1	0	0	1	1	0	1
\(P_m \)	0	1	0	1	1	0	0	0	1	1	1	1	0	1
\(I_m \)	-1	1	-1	1	1	-1	-1	-1	1	1	1	1	-1	1
\(B_m \)	0	0	0	2	0	-2	-2	0	2	2	2	0	0	2
\(D_m \)	1	1	1	0	1	0	0	1	0	0	1	1	0	1

Extension for multilevel PAM: (duobinary)

\[B_m = I_m + I_{m-1} \ldots \ldots m = 1,2, \ldots \]

2\(M - 1 \) Levels for \(B_m \)

\[I_m = 2P_m - (M - 1) \]

where \(\{P_m\} \) is the precoded sequence obtained from the M-level data sequence.

\[P_m = D_m - P_{m-1} \ldots \ldots (mod M) \]

\(\{D_m\} \) are having possible values 0,1,2, \ldots M - 1

\[D_m = 0,1,2, \ldots M - 1 \]

\[I_m = \pm d, \pm 3d, \ldots \pm (M - 1)d \]

\[B_m = 0, \pm 2d, \pm 4d, \ldots \pm 2(M - 1)d \ldots \ldots noise\ free\ case \]

So we may write

\[B_m = I_m + I_{m-1} = 2[P_m + P_{m-1} - (M - 1)] \]

Since \(D_m = P_m + P_{m-1} \ (mod M) \)

\[D_m = \frac{1}{2} B_m + (M - 1) \ (mod M) \]

The following is an in class example:

\(D_m \)	0	0	1	3	1	2	0	3	3	2	0	1	0
\(P_m \)	0	0	1	2	3	3	1	2	1	1	3	2	2
\(I_m \)	-3	-3	-3	-1	+1	+3	+3	-1	+1	-1	-1	+3	+1
\(B_m \)	-6	-6	-4	0	4	6	2	0	0	-2	2	4	2
\(D_m \)	0	0	1	3	1	2	0	3	3	2	0	1	0

- Note that there is some error correction capability (check Lathi’s text book)
In case of noise, we have to quantize to the nearest level

For modified duobinary:

\[x \left(\frac{n}{2W} \right) = -1 \quad \text{for } n = 1 \]
\[x \left(\frac{n}{2W} \right) = 1 \quad \text{for } n = -1 \]

\[b_m = I_m - I_{m-2} \]
\[P_m = D_m + P_{m-2} \pmod{M} \]

Conclusion about symbol by symbol detection:

+ Simple and used practically in many systems employing duobinary and modified duobinary.

- Mot optimal (in case of noise) due to the inherent memory in the received signal of a system using partial response signaling. This memory is not utilized.

This motivates the subject of MLS detection which utilizes the inherent memory.
Maximum Likelihood Sequence Detection

Memory can be represented by a trellis. For Duobinary signaling the trellis is shown in the Figure

![Trellis Diagram]

- Duobinary has a memory of length $L = 1$.
- The trellis has $s_t = M^L = 2^1$ states.
- Optimum ML: select the most probable path through the trellis upon observing $\{y_m\}$ at $t = mT$, $m = 1, 2, \ldots$.
- Every node will have M incoming nodes with corresponding metrics.

Viterbi Algorithm

- To learn more about Viterbi you might visit Dr. Muqaibl’s Website for Digital Communications 1.
- Out of the M choose one and discarded $M - 1$.
- Surviving path will be extended to M paths.

For a class of partial response signals the received sequence $\{y_m, 1 \leq m \leq N\}$ is described by the multivariate Gaussian pdf

$$y_N = \{y_1, y_2, y_3, \ldots, y_N\}'$$

$$I_N = \{I_1, I_2, I_3, \ldots, I_N\}'$$

$N > L$

With additive noise which Gaussian with zero mean

$$P\left(y_N | I_N \right) = \frac{1}{(2\pi \det C)^{N/2}} \exp \left(-\frac{1}{2} \left(y_N - B_N \right)' C^{-1} \left(y_N - B_N \right) \right)$$

Where $B_N = [B_1, B_2, B_3, \ldots, B_N]'$ is the mean of the vector y_N.

C is the $N \times N$ covariance matrix of y_N.

The ML selects the sequence that maximizes the pdf or maximize the natural logarithm (monotonic function) of $P\left(y_N | I_N \right)$.
\[
\ln P\left(y_N | l_N \right) = -\frac{N}{2} \ln(2\pi \det C) + \frac{1}{2} \left(y_N - B_N \right)' C^{-1} \left(y_N - B_N \right)
\]

Given \(\{y_m\} \) the data sequence \(l_m \) that maximize \(\ln P\left(y_N | l_N \right) \) is identical to the sequence \(l_N \) that minimize \(\left(y_N - B_N \right)' C^{-1} \left(y_N - B_N \right) \)

\[
\hat{l}_N = \arg_{l_N} \min \left[\left(y_N - B_N \right)' C^{-1} \left(y_N - B_N \right) \right]
\]

The computation is complicated by the calculation of the correlation of the noise samples \(v_m \) at the output of the matched filter.

\[
E[v_m v_{m+k}] = 0 \quad \text{for } k > L
\]

Simplification:

\[
E[v_m v_{m+k}] = 0 \quad \text{for } k > 0
\]

This means that \(C = \sigma_v^2 1_N \), where \(\sigma_v^2 = E[v_m^2] \),

\(1_N = N \times N \text{ identity matrix } \) .. avoid confusion with \(1_N \)

\[
\hat{l}_N = \arg_{l_N} \min \left[\left(y_N - B_N \right)' \left(y_N - B_N \right) \right]
\]

\[
\hat{l}_N = \arg_{l_N} \min \left[\sum_{m=1}^{N} \left(y_m - \sum_{k=0}^{L} x_k l_{m-k} \right)^2 \right]
\]

where

\[
B_m = \sum_{k=0}^{L} x_k l_{m-k}
\]

\(x_k = x(kT) \) sample values of the practical responses waveform

Metric Computation:

\[
DM_m \left(l_m \right) = DM_{m-1} \left(l_{m-1} \right) + \left(y_m - \sum_{k=0}^{L} x_k l_{m-k} \right)^2
\]

\[
\left(y_m - \sum_{k=0}^{L} x_k l_{m-k} \right)^2 \text{ new metric based on the received } y_m
\]

\[
DM_m \left(l_m \right) \text{ distance metric at } t = mT
\]
\[DM_{m-1}(l_{m-1}) \] distance metric at \(t = (m - 1)T \)

Problem: ML: introduces variable delay in detecting each transmitted symbol.

Solution: truncate to \(N_t \) most recent symbols. \(N_t > 5L \) if still disagree choose the most probable path. Loss in performance after \(5L \) is negligible.
Example (MLS)

Let us say that we transmitted \(I_0 \ I_1 \ I_2 \ I_3 \ldots = 1 \ 1 \ 1 \ 1 \ 1 \ldots \)

The received noise free sequence is \(b_1 \ b_2 \ b_3 \ b_4 \ldots = 2 \ 2 \ 2 \ 2 \ldots \)

Due to noise the received sequence is \(y_1 \ y_2 \ y_3 \ y_4 \ldots = 2.1 \ 0.9 \ 1.8 \ 2.2 \ldots \)

\(DM_0(1) = 0 \) (Assume the first metric is known so the error metric is zero)

\[
DM_1(1,1) = 0 + (y_1 - 2)^2 = (2.1 - 2)^2 = 0.01
\]

\[
DM_1(1,-1) = 0 + (y_1 - 0)^2 = (2.1)^2 = 4.41
\]

\[
DM_2(1,1,1) = 0.01 + (y_2 - 2)^2 = 0.01 + 1.21 = 1.22 \ (Survivor)
\]

\[
DM_2(1,-1,1) = 4.41 + (y_2 - 0)^2 = 4.41 + 0.81 = 5.22
\]

\[
DM_2(1,1,-1) = 0.01 + (y_2 - 0)^2 = 0.01 + 0.81 = 0.82 \ (Survivor)
\]

\[
DM_2(1,-1,-1) = 4.41 + (y_2 + 2)^2 = 4.41 + 2.9^2 = \ldots
\]

(no need for calculation because it clearly not the survivor)

\[
DM_3(1,1,1,1) = 1.22 + (y_3 - 2)^2 = 1.22 + 0.04 = 1.26 \ (Survivor)
\]

\[
DM_3(1,1,-1,1) = 0.82 + (y_3 - 0)^2 = 0.82 + 1.8^2 = 4.06
\]

\[
DM_3(1,1,1,-1) = 1.22 + (y_3 - 0)^2 = 1.22 + 3.24 = 4.46 \ (Survivor)
\]

\[
DM_3(1,1,-1,-1) = 0.82 + (y_3 - 0)^2 = 0.82 + 3.8^2 = \ldots
\]

ML output is \(I_1 = 1, I_2 = 1, I_3 = 1 \)

Using Symbol by Symbol

\[
I_m = y_m - I_{m-1}
\]

\[
I_1 = 1.1 \ldots \ldots 1
\]

\[
I_2 = 0.9 - 1 = -0.1 \ldots -1 \ (not \ correct)
\]

\[
I_3 = 1.8 - (-1) = 2.8 \ldots \ldots 1
\]
Signal Design for Channels with Distortion

1) Bandlimited Ideal Channels was done **(Before)**

2) Channels with distortions **(Now)** (time-invariant)

3) Use Equalization to mitigate time variant distortion **(Later)**

\[C(f) \text{ is known } |f| \leq W, \quad C(f) = 0 \text{ for } |f| > W \]

Objective: find \(G_T(f) \) and \(G_R(f) \) to minimize the error probability at the detector.

Noise is assumed to be Gaussian with PSD \(S_{nn}(f) \)

\[
G_T(f)C(f)G_R(f) = X_d(f)e^{-j2\pi ft_0}, \quad |f| \leq W
\]

\(X_d(f) \) is chosen to get zero ISI or controlled ISI.

For zero ISI, let \(X_d(f) = X_{rc}(f) \) raised cosine

\[
\sigma_v^2 = \int_{-\infty}^{\infty} S_{nn}(f)|G_R(f)|^2 df
\]

Consider PAM for simplicity \(y_m = x_0l_m + v_m = l_m + v_m \) where \(x_0 \) is normalized \(l_m = \pm d \)

\[
P_2 = \frac{1}{\sqrt{2\pi}\sigma_v} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2\sigma_v^2}} dy = Q\left(\frac{d^2}{\sigma_v^2} \right)
\]

We need to maximize \(\frac{d^2}{\sigma_v^2} \). Assuming noise is white \(S_{nn}(f) = \frac{N_0}{2} \)

Scenario #1: Pre-compensation for the total Channel distortion at the transmitter

\[
|G_T(f)| = \frac{\sqrt{X_{rc}(f)}}{|C(f)|}, \quad |f| \leq W
\]
\[|G_R(f)| = \sqrt{X_{rc}(f)} \quad |f| \leq W \]

Phase is also compensated at the transmitter.

\[
P_{av} = \frac{E(I_m^2)}{T} \int_{-\infty}^{\infty} g_r^2(t) dt = \frac{d^2}{T} \int_{-W}^{W} |G_T(f)|^2 df = \frac{d^2}{T} \int_{-W}^{W} X_{rc}(f) |C(f)|^2 df
\]

\[
d^2 = P_{av} T \left[\int_{-W}^{W} X_{rc}(f) |C(f)|^2 df \right]^{-1}
\]

The noise at the output of the receiver \(\sigma^2_v = \frac{N_0}{2} \), Hence SNR

\[
\frac{d^2}{\sigma^2_v} = \frac{2P_{av} T}{N_0} \left[\int_{-W}^{W} X_{rc}(f) |C(f)|^2 df \right]^{-1}
\]

Scenario #2: Compensation is equally divided between the transmitter and the receiver filters

\[
|G_T(f)| = |G_R(f)| = \frac{\sqrt{X_{rc}(f)}}{|C(f)|^2} \quad |f| \leq W, \text{ the phase is also divided}
\]

\[
P_{av} = \frac{d^2}{T} \int_{-W}^{W} X_{rc}(f) |C(f)| df
\]

Noise variance \(\sigma^2_v = \frac{N_0}{2} \int_{-W}^{W} X_{rc}(f) |C(f)| df \)

The SNR is given by

\[
\frac{d^2}{\sigma^2_v} = \frac{2P_{av} T}{N_0} \left[\int_{-W}^{W} X_{rc}(f) |C(f)| df \right]^{-2}
\]

Loss (dB) due to scenario #1 \(10 \log \int_{-W}^{W} X_{rc}(f) |C(f)|^2 df \)

Loss (dB) due to scenario #2 \(10 \log \left[\int_{-W}^{W} X_{rc}(f) |C(f)| df \right]^{-2} \)

If the channel is ideal \(C(f) = 1, |f| < W \), which means \(\int_{-W}^{W} X_{rc}(f) df = 1 \). (No loss)

If there is loss (\(|C(f)| < 1 \) \(|f| \leq W \)), scenario #2 might be better. (See text #9.30)

CDMA IS-95 uses root raised cosine with roll-off factor 0.22
Example
For a binary transmission system with rate =4800 bits/sec over a channel with frequency (magnitude)
response \(|C(f)| = \frac{1}{\sqrt{1+(\frac{f}{W})^2}}, \ |f| \leq W \)

Where W=4800Hz. Noise is AWGN with zero mean and \(\frac{N_0}{2} = 10^{-15} \frac{W}{Hz} \)

\(\beta = 1, \) because \(\frac{1}{T} = W \)

\[X_{rc}(f) = \frac{1}{2} T[1 + \cos(\pi T/f)] = T \cos^2 \left(\frac{\pi |f|}{9600} \right) \]

Using equal compensation

\[|G_T(f)| = |G_R(f)| = \frac{\sqrt{X_{rc}(f)}}{|C(f)|^{1/2}} = \left[1 + \left(\frac{f}{4800} \right)^2 \right]^{1/4} \cos \left(\frac{\pi |f|}{9600} \right) \ |f| \leq 4800 \]

and zero otherwise

One can find the amount of energy required to achieve a certain probability of error or loss when using the other compensation scenario.

Frequency response of an optimum transmitter filter.
Probability of Error in detection of PAM
M-ary in AWGN

Consider 1) $G_T(f)$ & $G_R(f)$ are designed for zero ISI.

2) $x(t) = g_T(t) * g_R(t)$ duobinary or modified duobinary.

Probability of Error Detection for PAM with Zero ISI
If no ISI $y_m = x_0 l_m + v_m$

$$x_0 = \int_{-W}^{W} |G(f)|^2 df = E_g$$

v_m is zero mean & $\sigma_v^2 = \frac{1}{2} E_g N_0$

l_m takes one out of M possible values.

Objective: P_e for a given amplitude.

Given $P_M = \frac{2(M-1)}{M} Q\left(\frac{2E_g}{\sqrt{N}}\right)$

$E_g = 3 \frac{E_{av}}{M^2 - 1}$

$E_{symbol, av} = kE_{bit, av}, \quad k = \log_2 M$

$$P_M = \frac{2(M-1)}{M} Q\left(\frac{6(\log_2 M) E_g}{(M^2 - 1)N}\right)$$

Conclusion: No change in probability of error if

- Signals are designed for zero ISI.
- Channel does not distort the transmitted signal.
- Optimum matched filter.

Probability of Error Partial Response signals
Ideal channel.. AWGN

Consider duobinary, modified duobinary.

Consider symbol-by-symbol, optimum ML sequence detection.
Pe in Symbol-by-symbol detection for controlled ISI

For the duo-binary signal:

\[y_m = I_m + I_{m-1} + v_m = B_m + v_m \]

For modified duobinary

\[y_m = I_m - I_{m-2} + v_m = B_m + v_m \]

\(I_m = \pm d, \pm 3d, \ldots, \pm (M-1)d \) equi-probable

\(B_m = 0, \pm 2d, \pm 4d, \ldots, \pm 2(M-1)d \) total 2M -1 levels

The scale factor \(d \) is equivalent to \(x_0 = E_g \)

In the absence of noise the received level has a triangular probability (show)

\[P(B = 2md) = \frac{M - |m|}{M^2} \], \(m = 0, \pm 1, \pm 2, \ldots, \pm (M-1) \)

Assume AWGN with zero mean and \(PSD = \frac{1}{2} N_0 \)

Assume errors occur if noise exceeds \(d \) (ignore the case where that could lead to a correct decision (edges, maximum and min levels))

\[\sigma_v^2 = \frac{1}{2} N_0 \int_{-W}^{W} |G_R(f)|^2 df = \frac{1}{2} N_0 \int_{-W}^{W} |X(f)| df = \frac{N_0}{\pi/4} = \frac{2N_0}{\pi} \]

For both duobinary and modified duobinary.

An upper bound on the symbol probability of error. (See text for details)

\[P_M < 2 \left(1 - \frac{1}{M^2} \right) Q \left(\sqrt{\frac{\pi}{4}} \right) \frac{6}{(M^2 - 1) N_0} E_{av} \]

\(E_{av} \) is the average energy per transmitted symbol, \(E_{av} = kE_{bav} = (\log_2 M)E_{bav} \)

The above is true for both duobinary and modified duobinary.

Compared with zero ISI there is a loss of 2.1 dB or \(\left(\frac{1}{4} \pi \right)^2 \).

The reason for the loss is the use of the suboptimal symbol-by-symbol detection.

Pe in Max-Likelihood sequence detection for controlled ISI

The loss is completely recovered. (If interested in the proof, please see the course textbook)