Digital Transmission over AWGN Channel

Contents

Pulse Modulator	2
Baseband vs Passband	2
Geometric Representations of Signal Waveforms	2
Gram Schmidt Orthogonalization Procedure	2
Optimum Receiver for Pulse-Modulated Signals in AWGN	2
Optimum Demodulator	3
Optimum Detector	4
Probability of Error for Signals in AWGN	4
1) Unipolar Signaling \FSK	4
2) Bipolar \PSK	4
3) For the digital transmission via carrier modulation	4
(Coherent) PSK, (Coherent)FSK, $\it M$ -ary PAM, $\it M$ -ary PSK ($\it M=2\&\ M=4$)	4
QAM	5
Binary DPSK	5
Non Coherent MFSK	5
Binary FSK	5
PM and Pb	6
1) Orthogonal Signaling (e.g. MFSK)	6
2) For MPSK	6
Comparison of Digital Signaling Mothods (Spostral Efficiency)	6

Pulse Modulator

The stream of 0's and 1's is mapped into a sequence of pulses. For the case of binary transmission, the widely used signaling are:

- 1) **bipolar (or PAM):** where a "1" is represented by a pulse of amplitude A and duration T_b , and a "0" is represented by amplitude -A.
- 2) Unipolar (OOK): "1" is a pulse of amplitude A, no pulse transmission for "0"

For **M-ary** pulse transmission (like multi-amplitude M-ary PAM or orthogonal M-FSK). A block of k bits, called a symbol, is represented by one of the $M=2^k$ symbols. For a bit rate of R_b , the symbol duration $T=kT_b$.

Baseband vs Passband

Geometric Representations of Signal Waveforms

Such a representation provides a **compact** characterization of signal sets for transmitting information over a channel and **simplifies the analysis** of their performance.

Suppose we have a set of M signal waveforms $s_m(t)$ where $1 \le m \le M$ which are to be used for transmitting information over a communication channel. These M signals can be represented in a N dimensional space $(N \le M)$ defined by the set of orthonormal basis functions $\psi_i(t)$, $1 \le i \le N$.

Each signal waveform may be represented by the vector $s_m = (s_{m1}, s_{m2}, \dots, s_{mN})$ or equivalently as a point in the N-dimensional signal space with coordinates $\{s_{mn}, 1 \le i \le N\}$, the elements of the s_{mn} are the projection of $s_m(t)$ on to $\psi_n(t)$.

$$s_{mn} = \int_0^T s_m(t) \psi_n(t) dt$$

Note that the energy of the m^{th} signal, E_m is given by

$$E_m = \int_{-\infty}^{\infty} s_m^2(t) dt = \sum_{n=1}^{N} s_{mn}^2$$

Is simply the square of the Euclidean distance from the origin to the point in the N-dimensional space.

Gram Schmidt Orthogonalization Procedure

Optimum Receiver for Pulse-Modulated Signals in AWGN

$$r(t) = S_m(t) + n(t)$$

Sample function if AWGN process with power spectral density $S_n(f) = \frac{N_0}{2}$

Objective: To design a receiver that is optimum in the sense that it minimizes the probability of making error.

- The demodulator converts r(t) to N-dimension observation vector $r(r_1, r_2, ..., r_N)$.
- The detector finds out which of the *M* possible signal waveforms was transmitted.

What is then the optimum demodulator & optimum detector?

For AWGN (Matched filter demodulator, see your text book)

Optimum Demodulator: is the matched filter, a filter whose impulse response h(t) is matched to the signal s(t).

h(t) = S(T - t), where T is the pulse period

$$H(f) = S^*(f)e^{-j2\pi fT}$$

Matched filter has two interesting properties:

- 1) Maximizes the output SNR $\left(\frac{S}{N_0}\right)$
- 2) The output (maximum) SNR obtained is $\frac{2E_S}{N_0}$

Depends on the energy of the waveform, s(t) not on its detailed characteristics

The matched filter can be realized by a product integrator or correlator.

$$r(t) \longrightarrow AS(T-t)$$
 $r(t) \longrightarrow T$
 $r(t) \longrightarrow T$

Optimum Detector

if all $\{S_m\}$ are equi-probable, & for AWGN, the optimum detector is the *minimum distance detector*. Select the signal S_m that is closest in Euclidian distance to the received vector r.

Make sure that you know the following detectors

MAP : Maximum Aposteriori Probabilities

ML : Maximum Likelihood

MLSE : Maximum Likelihood Sequence Estimator

Probability of Error for Signals in AWGN

$$Q(\sqrt{x}) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{x}{2}}\right)$$

1) Unipolar Signaling \FSK

$$P_b = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

where E_b is the received average energy per bit.

2) Bipolar \PSK

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

- To simplify the notation, call $\frac{E_b}{N_0} = \gamma_b$; SNR per bit, Remember that E_b is the received energy/bit.
- If the channel has attenuation α then $E_b=\alpha^2 E_{b_{transmitted}}$ In what follows, we are dropping α i.e. $\alpha=1$

3) For the digital transmission via carrier modulation

(Coherent) PSK, (Coherent) FSK, M-ary PAM, M-ary PSK ($M=2\&\ M=4$)

(Coherent) PSK:
$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$
 (Coherent) FSK: $P_b = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$

M-ary PAM:
$$P_M = \frac{2(M-1)}{M} Q\left(\sqrt{\frac{6(\log_2 M)E_b}{(M^2-1)N_0}}\right)$$

Note that:

- $E_{av} = (\log_2 M)E_b$ is the average energy per symbol
- when M=2, M-ary PAM reduces to BPSK.
- For M-ary PSK, no analytical solution is available except for M=2 (BPSK given above), and M=4
- When M=4 we have in effect two BPSK signals in phase quadrature, with coherent demodulation. There is no interference between the signals in the quadrature carriers and hence P_b is identical to M=2. Symbol error can be calculated as:

$$P_{e,4} = 1 - (1 - P_2)^2 = 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \left[1 - \frac{1}{2}Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\right]$$

(Coherent) PSK, (Coherent) FSK, M-ary PAM, M-ary PSK (M=2&M=4)

QAM

$$P_M \le 4Q\left(\sqrt{\frac{3kE_b}{(M-1)N_0}}\right) \cong 2Q\left(\sqrt{2k\frac{E_b}{N_0}}\sin\frac{\pi}{M}\right)$$

Binary DPSK

$$P_o = \frac{1}{2}e^{-\frac{E_b}{N_0}}$$

Non Coherent MFSK

$$P_{M} = \sum_{n=1}^{M-1} (-1)^{n+1} {M-1 \choose n} \frac{1}{n+1} e^{-(\frac{nkE_{b}}{N_{0}})/(n+1)}$$

Binary FSK

$$P_o = \frac{1}{2}e^{-\frac{E_b}{2N_0}}$$

which is 3dB worse than DPSK.

P_M and P_b

1) Orthogonal Signaling (e.g. MFSK)

All signals have the same distance between each other.

 P_M : Symbol Error Probability.

Selecting any of (M-1) error is equi-probable with probability= $\frac{P_M}{M-1}$

• consider a symbol of k bits,

there are $\binom{k}{m}$ ways in which m bits out of k bits may be in error. Since all k-tuple are used.

 \Rightarrow The average number of bits error per k-bit Symbol.

$$\sum_{m=1}^{k} m {k \choose m} \frac{P_M}{M-1} = k \frac{2^{k-1}}{2^k - 1} P_M$$

 \Rightarrow For the average P_b divided by $k\Rightarrow P_b=\frac{2^{k-1}}{2^k-1}P_M$

2) For MPSK

- Nearest to two other points assumed to be most dominant error.
- if adjacent symbols differs by one bit only

$$P_b = \frac{P_M}{k}$$

Comparison of Digital Signaling Methods (Spectral Efficiency)

See your text book

- SNR to achieve P_e is not sufficient for accurate comparison.
- The most compact and meaningful comparison.
- Normalized data rate $\frac{R}{W}$ (bit /sec /Hz of BW) (BW efficiency) versus $\frac{E_b}{N_0}$ to achieve a given error rate.
- Suppose we fix R $\left(\frac{\text{bits}}{\text{sec}}\right)$, what is BW? $T_b = \frac{1}{R}$ for k-bits symbol $T_S = \frac{k}{R}$
- The minimum BW required to transmit a pulse of width T is $\frac{1}{2T}$ (from Nyquist Criteria for zero ISI true for baseband, SSB pass band, or quadrature modulation)

$$w = \frac{R}{2k} \text{Hz} \Rightarrow \frac{R}{w} = 2k = 2 \log_2 M \text{ bits/sec/Hz}$$

• Doing so for other modulation schemes

M-PAM $2 \log_2 M$ QAM $\log_2 M$

M-PSK

$$\frac{2\log_2 M}{m}$$

$$\frac{2\log_2 M}{m}$$
 (MFSK) where, $m = \frac{R}{w}$

- See attached figure, comparison of different modulation schemes at $P_s = 10^{-5}$.
- Explain: given M find γ_b to achieve $\frac{R}{w}$ at P_e (symbol)= 10^{-5} .
- Comments on the figure below (Spectral Efficiency)
 - PAM, QAM, PSK and DPSK are bandwidth-efficient, ⇒For fixed BW, the rate ↑ logarithmically with M (number of waveforms)

The cost of
$$R \uparrow$$
 is $\frac{E_b}{N_0}$ to fix $P_e = 10^{-5}$

- 2) Orthogonal signals make inefficient use of BW $\left(\frac{R}{W} < 1\right)$.
 - Trades BW for a reduction in $\frac{E_b}{N_0}$ to achieve P_s
- 3) Normalized Channel Capacity limit

$$\frac{C}{W} = \log_2\left(1 + \frac{C}{W}\frac{E_b}{N_0}\right)$$

- There is a large gap between the channel capacity and the given performance ⇒ Coding
- 4) Different modulation schemes evaluated have different spectral characteristics.

For more ... you may visit my Website\teaching\EE571

http://faculty.kfupm.edu.sa/ee/mugaibel/Courses/courses.htm

