Problem 4.16 :

$$
\begin{gathered}
u(t)=X \cos 2 \pi f t-Y \sin 2 \pi f t \\
E[u(t)]=E(X) \cos 2 \pi f t-E(Y) \sin 2 \pi f t
\end{gathered}
$$

and :

$$
\begin{aligned}
\phi_{u u}(t, t+\tau)= & E\{[X \cos 2 \pi f t-Y \sin 2 \pi f t][X \cos 2 \pi f(t+\tau)-Y \sin 2 \pi f(t+\tau)]\} \\
= & E\left(X^{2}\right)[\cos 2 \pi f(2 t+\tau)+\cos 2 \pi f \tau]+E\left(Y^{2}\right)[-\cos 2 \pi f(2 t+\tau)+\cos 2 \pi f \tau] \\
& -E(X Y) \sin 2 \pi f(2 t+\tau)
\end{aligned}
$$

For $u(t)$ to be wide-sense stationary, we must have : $E[u(t)]=$ constant and $\phi_{u u}(t, t+\tau)=\phi_{u u}(\tau)$. We note that if $E(X)=E(Y)=0$, and $E(X Y)=0$ and $E\left(X^{2}\right)=E\left(Y^{2}\right)$, then the above requirements for WSS hold; hence these conditions are necessary. Conversely, if any of the above conditions does not hold, then either $E[u(t)] \neq$ constant, or $\phi_{u u}(t, t+\tau) \neq \phi_{u u}(\tau)$. Hence, the conditions are also necessary.

Problem 4.22 :

(a) $I_{n}=a_{n}-a_{n-2}$, with the sequence $\left\{a_{n}\right\}$ being uncorrelated random variables (i.e $E\left(a_{n+m} a_{n}\right)=$ $\delta(m))$. Hence :

$$
\begin{aligned}
\phi_{i i}(m) & =E\left[I_{n+m} I_{n}\right]=E\left[\left(a_{n+m}-a_{n+m-2}\right)\left(a_{n}-a_{n-2}\right)\right] \\
& =2 \delta(m)-\delta(m-2)-\delta(m+2) \\
& =\left\{\begin{array}{rr}
2, & \mathrm{~m}=0 \\
-1, & \mathrm{~m}= \pm 2 \\
0, & \text { o.w. }
\end{array}\right\}
\end{aligned}
$$

(b) $\Phi_{u u}(f)=\frac{1}{T}|G(f)|^{2} \Phi_{i i}(f)$ where :

$$
\begin{aligned}
\Phi_{i i}(f) & =\sum_{m=-\infty}^{\infty} \phi_{i i}(m) \exp (-j 2 \pi f m T)=2-\exp (j 4 \pi f T)-\exp (-j 4 \pi f T) \\
& =2[1-\cos 4 \pi f T]=4 \sin ^{2} 2 \pi f T
\end{aligned}
$$

and

$$
|G(f)|^{2}=(A T)^{2}\left(\frac{\sin \pi f T}{\pi f T}\right)^{2}
$$

Therefore :

$$
\Phi_{u u}(f)=4 A^{2} T\left(\frac{\sin \pi f T}{\pi f T}\right)^{2} \sin ^{2} 2 \pi f T
$$

(c) If $\left\{a_{n}\right\}$ takes the values $(0,1)$ with equal probability then $E\left(a_{n}\right)=1 / 2$ and $E\left(a_{n+m} a_{n}\right)=$ $\left\{\begin{array}{ll}1 / 4, & \mathrm{~m} \neq 0 \\ 1 / 2, & \mathrm{~m}=0\end{array}\right\}=[1+\delta(m)] / 4$. Then :

$$
\begin{aligned}
\phi_{i i}(m) & =E\left[I_{n+m} I_{n}\right]=2 \phi_{a a}(0)-\phi_{a a}(2)-\phi_{a a}(-2) \\
& =\frac{1}{4}[2 \delta(m)-\delta(m-2)-\delta(m+2)]
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{i i}(f)=\sum_{m=-\infty}^{\infty} \phi_{i i}(m) \exp (-j 2 \pi f m T)=\sin ^{2} 2 \pi f T \\
& \Phi_{u u}(f)=A^{2} T\left(\frac{\sin \pi f T}{\pi f T}\right)^{2} \sin ^{2} 2 \pi f T
\end{aligned}
$$

Thus, we obtain the same result as in (b), but the magnitude of the various quantities is reduced by a factor of 4 .

Problem 5.20 :

The constellation of Fig. P5-20(a) has four points at a distance $2 A$ from the origin and four points at a distance $2 \sqrt{2} A$. Thus, the average transmitted power of the constellation is:

$$
P_{a}=\frac{1}{8}\left[4 \times(2 A)^{2}+4 \times(2 \sqrt{2} A)^{2}\right]=6 A^{2}
$$

The second constellation has four points at a distance $\sqrt{7} A$ from the origin, two points at a distance $\sqrt{3} A$ and two points at a distance A. Thus, the average transmitted power of the second constellation is:

$$
P_{b}=\frac{1}{8}\left[4 \times(\sqrt{7} A)^{2}+2 \times(\sqrt{3} A)^{2}+2 A^{2}\right]=\frac{9}{2} A^{2}
$$

Since $P_{b}<P_{a}$ the second constellation is more power efficient.

Problem 5.28:

For 4-phase PSK $(M=4)$ we have the following realtionship between the symbol rate $1 / T$, the required bandwith W and the bit rate $R=k \cdot 1 / T=\frac{\log _{2} M}{T}$ (see 5-2-84):

$$
W=\frac{R}{\log _{2} M} \rightarrow R=W \log _{2} M=2 W=200 \mathrm{kbits} / \mathrm{sec}
$$

For binary FSK $(M=2)$ the required frequency separation is $1 / 2 T$ (assuming coherent receiver) and (see 5-2-86):

$$
W=\frac{M}{\log _{2} M} R \rightarrow R=\frac{2 W \log _{2} M}{M}=W=100 \mathrm{kbits} / \mathrm{sec}
$$

Finally, for 4 -frequency non-coherent FSK, the required frequency separation is $1 / T$, so the symbol rate is half that of binary coherent FSK, but since we have two bits/symbol, the bit ate is tha same as in binary FSK :

$$
R=W=100 \mathrm{kbits} / \mathrm{sec}
$$

