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(c) The 3-db frequency for (a) is :

sin 2πf3dbT

(πf3dbT )
2 =

1

2
⇒ f3db =

0.44

T

(where this solution is obtained graphically), while the 3-db frequency for the sinusoidal pulse
on (b) is :

cos 2πTf

(1− 4T 2f 2)2
=
1

2
⇒ f3db =

0.59

T

The rectangular pulse spectrum has the first spectral null at f = 1/T, whereas the spectrum
of the sinusoidal pulse has the first null at f = 3/2T = 1.5/T. Clearly the spectrum for the
rectangular pulse has a narrower main lobe. However, it has higher sidelobes.

Problem 4.16 :

u(t) = X cos 2πft− Y sin 2πft

E [u(t)] = E(X) cos 2πft− E(Y ) sin 2πft

and :

φuu(t, t+ τ) = E {[X cos 2πft− Y sin 2πft] [X cos 2πf(t+ τ)− Y sin 2πf(t+ τ)]}

= E (X2) [cos 2πf(2t+ τ) + cos 2πfτ ] + E (Y 2) [− cos 2πf(2t+ τ) + cos 2πfτ ]

−E (XY ) sin 2πf(2t+ τ)

55



For u(t) to be wide-sense stationary, we must have : E [u(t)] =constant and φuu(t, t+τ) = φuu(τ).
We note that if E(X) = E(Y ) = 0, and E(XY ) = 0 and E(X2) = E(Y 2), then the above
requirements for WSS hold; hence these conditions are necessary. Conversely, if any of the
above conditions does not hold, then either E [u(t)] 
=constant, or φuu(t, t+ τ) 
= φuu(τ). Hence,
the conditions are also necessary.

Problem 4.17 :

The first basis function is :

g4(t) =
s4(t)√E4

=
s4(t)√
3
=

{
−1/√3, 0 ≤ t ≤ 3

0, o.w.

}

Then, for the second basis function :

c43 =
∫ ∞

−∞
s3(t)g4(t)dt = −1/

√
3⇒ g′3(t) = s3(t)− c43g4(t) =




2/3, 0 ≤ t ≤ 2
−4/3, 2 ≤ t ≤ 3
0, o.w




Hence :

g3(t) =
g′3(t)√
E3

=




1/
√
6, 0 ≤ t ≤ 2

−2/√6, 2 ≤ t ≤ 3
0, o.w




where E3 denotes the energy of g
′
3(t) : E3 =

∫ 3
0 (g

′
3(t))

2 dt = 8/3.
For the third basis function :

c42 =
∫ ∞

−∞
s2(t)g4(t)dt = 0 and c32 =

∫ ∞

−∞
s2(t)g3(t)dt = 0

Hence :
g′2(t) = s2(t)− c42g4(t)− c32g3(t) = s2(t)

and

g2(t) =
g′2(t)√E2

=




1/
√
2, 0 ≤ t ≤ 1

−1/√2, 1 ≤ t ≤ 2
0, o.w




where : E2 =
∫ 2
0 (s2(t))

2 dt = 2.
Finally for the fourth basis function :

c41 =
∫ ∞

−∞
s1(t)g4(t)dt = −2/

√
3, c31 =

∫ ∞

−∞
s1(t)g3(t)dt = 2/

√
6, c21 = 0

Hence :
g′1(t) = s1(t)− c41g4(t)− c31g3(t)− c21g2(t) = 0⇒ g1(t) = 0
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(c) The transition matrix is :

In−1 In Bn In+1 Bn+1

−1 −1 −2 −1 −2
−1 −1 −2 1 0
−1 1 0 −1 0
−1 1 0 1 2
1 −1 0 −1 −2
1 −1 0 1 0
1 1 2 −1 0
1 1 2 1 2

The corresponding Markov chain model is illustrated in the following figure :
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Problem 4.22 :

(a) In = an−an−2,with the sequence {an} being uncorrelated random variables (i.eE (an+man) =
δ(m)). Hence :

φii(m) = E [In+mIn] = E [(an+m − an+m−2) (an − an−2)]
= 2δ(m)− δ(m− 2)− δ(m+ 2)

=




2, m = 0
−1, m = ±2
0, o.w.




(b) Φuu(f) =
1
T
|G(f)|2Φii(f) where :

Φii(f) =
∑∞

m=−∞ φii(m) exp(−j2πfmT ) = 2− exp(j4πfT )− exp(−j4πfT )
= 2 [1− cos 4πfT ] = 4 sin 22πfT

and

|G(f)|2 = (AT )2
(
sin πfT

πfT

)2
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Therefore :

Φuu(f) = 4A2T

(
sin πfT

πfT

)2

sin 22πfT

(c) If {an} takes the values (0,1) with equal probability then E(an) = 1/2 and E(an+man) ={
1/4, m 
= 0
1/2, m = 0

}
= [1 + δ(m)] /4. Then :

φii(m) = E [In+mIn] = 2φaa(0)− φaa(2)− φaa(−2)
= 1

4
[2δ(m)− δ(m− 2)− δ(m+ 2)]

and
Φii(f) =

∑∞
m=−∞ φii(m) exp(−j2πfmT ) = sin 22πfT

Φuu(f) = A2T
(

sinπfT
πfT

)2
sin 22πfT

Thus, we obtain the same result as in (b) , but the magnitude of the various quantities is reduced
by a factor of 4 .

Problem 4.23 :

x(t) = Re [u(t) exp (j2πfct)] where u(t) = s(t)± jŝ(t). Hence :

U(f) = S(f)± jŜ(f) where Ŝ(f) =

{ −jS(f), f > 0
jS(f), f < 0

}

So :

U(f) =

{
S(f)± S(f), f > 0
S(f)∓ S(f), f < 0

}
=

{
2S(f) or 0, f > 0
0 or 2S(f), f < 0

}

Since the lowpass equivalent of x(t) is single-sideband, we conclude that x(t) is a single-sideband
signal, too. Suppose, for example, that s(t) has the following spectrum. Then, the spectra of
the signals u(t) (shown in the figure for the case u(t) = s(t)+jŝ(t)) and x(t) are single-sideband
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(b) The variance of the noise is :

σ2
n =

λ

2

∫ ∞

−∞
e−λ|x|x2dx

= λ
∫ ∞

0
e−λxx2dx = λ

2!

λ3
=

2

λ2
= σ2

Hence, the SNR is:

SNR =
A2

σ2

and the probability of error is given by:

P (e) =
1

2
e−

√
2SNR

For P (e) = 10−5 we obtain:

ln(2 × 10−5) = −
√

2SNR =⇒ SNR = 58.534 = 17.6741 dB

If the noise was Gaussian, then the probability of error for antipodal signalling is:

P (e) = Q

[√
2Eb
N0

]
= Q

[√
SNR

]

where SNR is the signal to noise ratio at the output of the matched filter. With P (e) = 10−5

we find
√
SNR = 4.26 and therefore SNR = 18.1476 = 12.594 dB. Thus the required signal to

noise ratio is 5 dB less when the additive noise is Gaussian.

Problem 5.20 :

The constellation of Fig. P5-20(a) has four points at a distance 2A from the origin and four
points at a distance 2

√
2A. Thus, the average transmitted power of the constellation is:

Pa =
1

8

[
4 × (2A)2 + 4 × (2

√
2A)2

]
= 6A2

The second constellation has four points at a distance
√

7A from the origin, two points at a
distance

√
3A and two points at a distance A. Thus, the average transmitted power of the

second constellation is:

Pb =
1

8

[
4 × (

√
7A)2 + 2 × (

√
3A)2 + 2A2

]
=

9

2
A2

Since Pb < Pa the second constellation is more power efficient.
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Problem 5.28 :

For 4-phase PSK (M = 4) we have the following realtionship between the symbol rate 1/T , the
required bandwith W and the bit rate R = k · 1/T = log2M

T
(see 5-2-84):

W =
R

log2M
→ R =Wlog2M = 2W = 200 kbits/sec

For binary FSK (M = 2) the required frequency separation is 1/2T (assuming coherent receiver)
and (see 5-2-86):

W =
M

log2M
R→ R =

2Wlog2M

M
=W = 100 kbits/sec

Finally, for 4-frequency non-coherent FSK, the required frequency separation is 1/T , so the
symbol rate is half that of binary coherent FSK, but since we have two bits/symbol, the bit ate
is tha same as in binary FSK :

R =W = 100 kbits/sec

Problem 5.29 :

We assume that the input bits 0, 1 are mapped to the symbols -1 and 1 respectively. The
terminal phase of an MSK signal at time instant n is given by

θ(n; a) =
π

2

k∑
k=0

ak + θ0

where θ0 is the initial phase and ak is ±1 depending on the input bit at the time instant k.
The following table shows θ(n; a) for two different values of θ0 (0, π), and the four input pairs
of data: {00, 01, 10, 11}.

θ0 b0 b1 a0 a1 θ(n; a)
0 0 0 -1 -1 −π
0 0 1 -1 1 0
0 1 0 1 -1 0
0 1 1 1 1 π
π 0 0 -1 -1 0
π 0 1 -1 1 π
π 1 0 1 -1 π
π 1 1 1 1 2π
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