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Introduction

* Motivation: The constraints imposed by the
channel bandwidth in the selection of the
modulation technique used to transmit the
information

 Information is stochastic, and hence digitally
modulated signals are stochastic processes.
=>Power Spectrum Density (PSD) (Not FFT)

» Types of digitally modulated signals
> Linearly modulated signals ( ASK, PSK; QAM)
> Non linearly modulated signals (CPFSK, CPM) beyond the scope
> Baseband with memory (Markov structure)



Power Spectra of Linearly Modulated Signals
(ASK, PSK, QAM)

{In} — Represents the sequence of symbols that results from mapping k bits blocks.

Modulation scheme {I,}
PAM Real value
PSK, QAM, combined (PAM-PSK) Complex value
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« {I,} w.s.s with mean = y; and Autocorrelation = R;(m) = EE[I;;Iner]
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Let m’= m+n
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Let m=m’
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Is periodic with period T
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s The mean value of v;(t) is pernodlc

Elv,(t)] = w; Z g(t —nT)

n=—oo

» Cyclostationary process: periodically stationary process is w.s.

» To avoid time dependence we average over one period
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Time shift by —nT: change of variable n+m to
m ,n to 0,and integration limits
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sthe Time autocorrelation function of g(t) is

R, = fg*(t)g(t+r)dt

= R, (1) = %Z R, (m)Ry (z — mT)

By FT, the average PSD

1
50, () = ZIG(IPS ()

» G(f)isthe ET of g(t)
» S;(f) is the PS.D of the information sequence



° (= ) Rimye /2T

m=—oo . . .
) Exponential Fourier series
i.e. PSD of v(t) depends on ™ Discrete ET

|) pulse shape g(t)
2) correlation characteristic of information sequence.

Ri(m)=T f S, (e mT df

» Example, {I,,} is real and mutually uncorrelated
o/ = E[I*] — u? and hence E[I?] = u? + o/
ElL;liym] = E[IHm]E[IHm]:Miz
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It can be viewed as the exponential FS of a periodic train of impulse
1

with each impulse having an area of — S S(1-nT )= 3 ere
where a)_,_:,—{r
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For uncorrelated sequence (suing the property of the impulse
function)
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nm=—co
First term: Continuous spectrum
Second Term: Discrete frequency component spaced by %

If the mean 4 = 0 = no spectral lies — (desirable)

> To get zero mean we need:
Equally likely symbols
Symmetrically positioned



Example |
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+1+3-1-3
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Example Il To illustrate the effect of g(t)
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Example 1
A second illustration of the spectral shapeing
» Raised cosine pulse

(t)—A1+ znt ! 0<t<T
g _2’ cos7(t=3) =t=

AT sinmfT .
G(f) = T it
2 wf T (1—f2T?)
I’ oy nonzcro
I Decays inversely as the f* ['1 aY L
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» Haszerosat f = - on= +2,13, ... all discrete spectral components

i

—

excepttheonesat f = 0and f = -_I-% vanishes.

» Broader main lobe, but the tail decay inversely f6

* Which ones uses less bandwidth?
It depends on the definition of the bandwidth.



Example 4: Controlling Spectrum by Operations on the info.
Sequence
« {b,} — binary sequence, b,:uncorrelated —1,+1,u=0, d* =1

ot 1n=bn+bn_1
2 m=20

R, =E[L,+m] =41 m=+1 How?
0 otherwise

S;(f) = 2(1 + cos2nfT) = 4cos®* fT
4
So(f) = ?|G(f)|2 cos* mfT

Check the provided MATLAB code and the presentation of the
results



Power Spectrum of CPFSK and CPM signals

See figure 3.4.4 The spectra of the MSK and OQPSK the main
lobe of MSK is 50% wider. However the side
lobes of MSK fall off considerably faster.
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Fractional out of band Power

MSK offers better
fractional out-of-band
power above fT,=1.
This is why it is
popular in many
communication
systems

Fractional out-of-band signal power (dB)
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s The spectra of the MSK and OQPSK the main lobe of
MSK is 50% wider. However the side lobes of MSK fall
off considerably faster.

* 99% power
° W =1.2/T, for MSK
° W = 8/T, for OQPSK

» FSK efficiency can be improved (but will lose
orthogonality)

* There is special issue on bandwidth-efficient modulation
and coding published by the |[EEE Transaction on
communication (March 1981) CPM?
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