Introduction

1. Elements of Digital Communication System

Digital Signal: A digital signal is discrete in time and has a finite number of output characters i.e. "discrete in time and discrete in amplitude".

Remember that: digital is not equal to binary signal (0,1).

For *M*-ary symbols $M = 2^b$, where *b* is number of bits in the symbol. If *b*=1, then M=2 *i.e.* a binary signal has two symbols. So the modulator transmits $s_i(t)$, i = 0, 1, ..., M-1 distinct waveforms

2. Analog to digital conversion "A2D"

Explain Nyquist sampling theorem.

Are we human analog or digital?

3. Communications System Block Diagram

Is noise good or bad?

Thanks Allah for noise, if there were no noise, we would have no Job !

There are many types of noise (e.g. additive thermal noise)

Important Terms

Power, Bandwidth, Transmission rate, BER, cost, SNR, SER

BER (Bit Error Rate): The average probability of a bit-error at the output of the decoder is a measure of the performance of the demodulator- decoder combination.

But this is not always the best measure

Compare with FER (frame error rate) or SER(symbol error rate)

4. Communication Channels and their characteristics

Examples: wires/fiber optics/ underwater ocean "acoustics" Data Storage media (Disks (magnetic/optical(DVD))

Additive noise (thermal noise) is common to all caused by solid state electronics. The transmitted signal is affect by interference, signal attenuation, amplitude and phase distortion. Comparison of co-axial to twisted pairs. (Bandwidth) (Usage) (Cross talk) shown in Figure 1.2-1 (Digital Communications, Proakis and Salehi)

Fiber optics (Trans- Atlantic/ Trans- Pacific) \rightarrow uses LED/Laser.

Wireless antenna has at least $\lambda/10$ wavelength calculated using the equation f_c λ =c

Major problems (signal fading due to multipath)

In the course website, there are 2 figures from the text and a link to a PDF figure for the frequency allocation in the US.

s(t)

...(1)

n(t)

5. Mathematical Models for Communication Channels

Models represent the most important characteristics.

The additive noise channel

Interference in transmission

Thermal noise is usually characterized by Gaussian noise process. This is why we limit our model.

Additive Gaussian Noise channel (AWGN).

Very widely used because 1) Applies to a broad class of physical communication channels
2) Mathematically tractable.

r(t)=s(t)+n(t)

Additive Gaussian Noise channel (AWGN) with attenuation

Received signal with signal attenuation and AWGN noise is given as

 $r(t) = \alpha s(t) + n(t)$ (3) where α is the attenuation factor

The linear Filter channel

Filters (modeled as linear filter) are used frequently (e.g. to control the bandwidth)

$$r(t) = s(t) * c(t) + n(t)$$

$$\int_{-\infty}^{\infty} c(\tau)s(t-\tau)d\tau + n(t)$$
(4)
$$s(t)$$

Linear
filter $c(t)$
$$n(t)$$

where c(t) is the impulse response of the filter.

The linear time-invariant (LTI) filter channel

In more realistic form , the channel is expressed as $c(\tau;t)$

au : elapsed time

$$r(t) = s(t) * c(\tau; t) + n(t) = \int_{-\infty}^{\infty} c(\tau; t) s(t - \tau) d\tau + n(t) \quad \dots \dots (5)$$

Example: Mobile Cellular Radio Channel

A special case of mobile cellular radio

If
$$c(\tau;t) = \sum_{k=1}^{L} a_k(t) \delta(t-\tau_k)$$
(6)

Substituting equation (6) in (5)

$$r(t) = \sum_{k=1}^{L} a_k(t)\delta(t-\tau_k) + n(t)$$

The received signal consists of L multipath components, where each component is attenuated by $\{a_n(t)\}$ and delayed by $\{\tau_k\}$.

6. A Historical Perspective.

- 1837 \rightarrow Morse code
- 1875 \rightarrow Baudot: fixed length code
- 1924 → Nyquist: ISI

1942 \rightarrow Wiener

1939 → Kolmogrov

) optimum linear filter (receiver)

1948 → Shannon: channel capacity $C = W \log_2(1 + \frac{P}{WN_0})$ bits/sec (Information theory)

1950 \rightarrow Hamming

1965 ightarrow Wozencraft and Jacobs

1993 → Berrou (1993) *et. al.* : turbo codes.

4