
11\ LEMPEL-ZIV CODING

A drawback of the Huffman code is that it requires knowledge of a probabilistic model
of the source; unfortunately, in practice, source statistics are not always known a priori.
Moreover, in modeling text we find that storage requirements prevent the Huffman code
from capturing the higher-order relationships between words and phrases, thereby com-
promising the efficiency of the code. To overcome these practical limitations, we may use
the Lempel-Ziv algorithm,7 which is intrinsically adaptive and simpler to implement than
Huffman coding.

Basically, encoding in the Lempel-Ziv algorithm is accomplished by parsing the
source data stream into segments that are the shortest subsequencesnot encounteredpre-
viously. To illustrate this simple yet elegant idea, consider the example of an input binary
sequence specified as follows:

000101110010100101 . . .

It is assumed that the binary symbols 0 and 1 are already stored in that order in the code
book. We thus write

Subsequences stored:

Data to be parsed:

0,1
000101110010100101 . ..

The encoding process begins at the left. With symbols 0 and 1 already stored, the shortest
subsequence of the data stream encountered for the first time and not seen before is 00;
so we write

Subsequences stored:

Data to be parsed:

0, 1, 00
0101110010100101 . . .

The second shortest subsequence not seen before is 01; accordingly, we go on to write

Subsequences stored:

Data to be parsed:

0, 1, 00, 01
01110010100101 .. .

The next shortest subsequence not encountered previously is 011; hence, we write

Subsequences stored:

Data to be parsed:

0, 1, 00, 01, 011
10010100101 . . .

We continue in the manner described here until the given data stream has been completely
parsed. Thus, for the example at hand, we get the code book of binary subsequences shown
in the second row of Figure 9.6.

Numerical positions: 1 2 3 4 5 6 7 8 9
Subsequences: 0 1 00 01 011 10 010 100 101
Numerical representations: 11 12 42 21 41 61 62
Binary encoded blocks: 0010 0011 1001 0100 1000 1100 1101

FIGURE9.6 Illustrating the encoding process performed by the Lempel-Ziv algorithm on the
binary sequence 00010 III 00 10100 101. . . .

The first row shown in this figure merely indicates the numerical positions of the
individual subsequences in the code book. We now recognize that the first subsequence of
the data stream, 00, is made up of the concatenation of the first code book entry, 0, with
itself; it is therefore represented by the number 11. The second subsequence of the data
stream, 01, consists of the first code book entry, 0, concatenated with the second code
book entry, 1; it is therefore represented by the number 12. The remaining subsequences
are treated in a similar fashion. The complete set of numerical representations for the
various subsequences in the code book is shown in the third row of Figure 9.6. As a further
example illustrating the composition of this row, we note that the subsequence 010 consists
of the concatenation of the subsequence 01 in position 4 and symbol 0 in position 1; hence,
the numerical representation 41. The last row shown in Figure 9.6 is the binary encoded
representation of the different subsequences of the data stream.

The last symbol of each subsequence in the code book (i.e., the second row of Figure
9.6) is an innovation symbol, which is so called in recognition of the fact that its appendage
to a particular subsequence distinguishes it from all previous subsequences stored in the
code book. Correspondingly, the last bit of each uniform block of bits in the binary en-
coded representation of the data stream (i.e., the fourth row in Figure 9.6) represents the
innovation symbol for the particular subsequence under consideration. The remaining bits
provide the equivalent binary representation of the "pointer" to the root subsequence that
matches the one in question except for the innovation symbol.

The decoder is just as simple as the encoder. Specifically, it uses the pointer to identify
the root subsequence and then appends the innovation symbol. Consider, for example, the
binary encoded block 1101 in position 9. The last bit, 1, is the innovation symbol. The
remaining bits, 110, point to the root subsequence 10 in position 6. Hence, the block 1101
is decoded into 101, which is correct.

From the example described here, we note that, in contrast to Huffman coding, the
Lempel-Ziv algorithm uses fixed-length codes to represent a variable number of source
symbols; this feature makes the Lempel-Ziv code suitable for synchronous transmission.
In practice, fixed blocks of 12 bits long are used, which implies a code book of 4096
entries.

For a long time, Huffman coding was unchallenged as die algorithm of choice for
data compaction. However, the Lempel-Ziv algorithm has taken over almost completely
from the Huffman algorithm. The Lempel-Ziv algorithm is now the standard algorithm
for file compression. When it is applied to ordinary English text, the Lempel-Ziv algorithm
achieves a compaction of approximately 55 percent. This is to be contrasted with a com-
paction of approximately 43 percent achieved with Huffman coding. The reason for this
behavior is that, as mentioned previously, Huffman coding does not take advantage of the
intercharacter redundancies of the language. On the other hand, the Lempel-Ziv algorithm
is able to do the best possible compaction of text (within certain limits) by working effec-
tively at higher levels.

