	KFUPM-EE DEPT.
Eroblem Set \# 5	EE430: Information Theory and Coding

1. Perform the following calculation in $\mathrm{GF}(2)[x]$
a) $(1+x)\left(1+x^{2}\right)+x^{3}$
b) $x+x^{4} \bmod x^{2}+1$
c) $1+x+x^{2} \bmod 1+x$
2. For polynomials in $G F(2)[x]$, show that

$$
\left(1+x^{n}\right)^{2}=1+x^{2 n}
$$

3. Given that $\mathrm{X}^{9}+1=(\mathrm{X}+1)\left(\mathrm{X}^{2}+\mathrm{X}+1\right)\left(\mathrm{X}^{6}+\mathrm{X}^{3}+1\right)$ determine the cyclic codes with block length 9 .
4. Determine the parity-check polynomial of the $(15,5)$ cyclic code with generator polynomial given by:

$$
g(X)=1+X+X^{2}+X^{4}+X^{5}+X^{8}+X^{10}
$$

5. Show that the following linear code with generator matrix \mathbf{G} is not cyclic:

$$
\mathbf{G}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

6. The generator polynomial of a $(15,11)$ Hamming code is defined by:

$$
g(X)=1+X+X^{4}
$$

Develop the encoder and syndrome calculator for this code, using a systematic form for the code.
7. Consider the $(7,4)$ Hamming code defined by the generator polynomial:

$$
g(X)=1+X+X^{3}
$$

The code word 0111001 is sent over a noisy channel, producing the received word 0101001 that has a single error. Determine the syndrome polynomial $s(X)$ for this received word, and show that it is identical to the error polynomial $e(X)$.
8. Construct a systematic $(7,3)$ cyclic code.

Try problems from the textbook by Richard B. Wells.

Note: answers will not be posted. If you have any question you may visit in the office hours or by an appointment.

