King Fahd University of Petroleum & Minerals

Electrical Engineering Department

EE370: Communications Engineering I (071)

Quiz 6: Principles of Digital Date Transmission Dr. Ali Muqaibel

Serial # O

-2 points for not writing your serial #

"Corrected" Name: KEY

Sec. 4

1) Data at a rate of 7 kbits/s is to be transmitted over a leased line of bandwidth 4 kHz using Nyquist criterion pulses. Determine the maximum value of roll-off factor r that can be used.

$$B = \frac{R}{2} + r \frac{R}{2}$$

$$4K = \frac{7}{2}K + r \frac{7}{2}K$$

$$8 = 7 + 7r$$

$$r = \frac{1}{7} = 0.1428$$

- 2) A pulse p(t) whose spectrum $P(\omega)$ is shown in the figure satisfies the Nyquist criterion. If f_1 =0.7 MHz and f_2 =1.3 MHz, determine :
 - a. the roll-off factor.
 - b. the maximum rate at which binary data can be transmitted by this pulse using the Nyquist criterion.

$$r = \frac{\omega_{x}}{\beta_{mix}} = \frac{1.3-1}{1} = \boxed{0.3 = r}$$

$$B = \frac{R}{2} + r \frac{R}{2} = \frac{R}{2} = \frac{2B}{(1+r)}$$

$$R = 2B/(1+r)$$

$$R = \frac{2(1M)}{1.3} = \frac{2M}{1.3} = 1.538 \text{ M} \frac{\text{bit}}{\text{Sec}}$$

