King Fahd University of Petroleum \& Minerals

Serial \# 0
Electrical Engineering Department
EE370: Communications Engineering I (102)
Quiz 2: Fourier Transform
Name: Key
ver. 1
Compute the inverse Fourier transform of the following signal. (Write your answer in the simplest form)

Final Answer:

$$
\pi \Delta\left(\frac{\pi t}{4}\right) \cos 20 t
$$

Coefficient
Δ
Argument of Δ
Shifting cos $20 t$

2 points
1 point
2 points
2 points

Match the time responses $x(t)$ with the corresponding frequency responses $|\mathrm{X}|$.

1. \qquad D \qquad
2. \qquad E \qquad
3. \qquad A \qquad
4. \qquad B \qquad
5. \qquad C \qquad
Notice that 4 \& 5 consist of sum of two sinusoidal Signals because the spectrum is made of 4 deltas. The difference between $4 \& 5$ is that in 4 the sinusoidal signal with higher frequency is stronger this is why it is mapped to B and 5 is mapped to C

B

D

Grading: 5 correct $\rightarrow 3$ points, 3 correct $\rightarrow 2$ points, 2 correct $\rightarrow 1$ point, $1 \rightarrow 0.5,0 \rightarrow 0$

Short Table of Fourier Transforms

	$g(t)$	$G(\omega)$		Trigonometric Identities	
1	$e^{-a t} u(t)$	$\frac{1}{a+j \omega}$	$a>0$	$\cos A \cos B=1 / 2[\cos (A+B)+\cos (A-B)]$	
2	$e^{a t} u(-t)$	$\frac{1}{a-j \omega}$	$a>0$		
3	$e^{-a\|t\|}$	$\frac{2 a}{a^{2}+\omega^{2}}$	$a>0$	$\sin A \sin B=1 / 2[\cos (A-B)-\cos (A+B)]$	
4	$t e^{-a t_{u}} u(t)$	$\frac{1}{(a+j \omega)^{2}}$	$a>0$		
5	$t^{\prime \prime} e^{-a t} u(t)$	$\frac{n!}{(a+j \omega)^{n+1}}$	$a>0$	$\sin A \cos B=1 / 2[\sin (A+B)+\sin (A-B)]$	
6	$\delta(t)$	1			
7	1	$2 \pi \delta(\omega)$			
8	$e^{j a 0 t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$			
9	$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$			
10	$\sin \omega_{0} t$	$j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$			
11	$u(t)$	$\pi \delta(\omega)+\frac{1}{j \omega}$			
12	$\operatorname{sgn} t$	$\frac{2}{2}$			
13	$\cos \omega_{0} t u(t)$	$\frac{\pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]+\frac{j \omega}{\omega_{0}^{2}-\omega^{2}}$			
14	$\sin \omega_{0} t u(t)$	$\frac{\pi}{2 j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]+\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}$			
15	$e^{-a t} \sin \omega_{0} t u(t)$	$\frac{\omega_{0}}{(a+j \omega)^{2}+\omega_{0}^{2}}$		$a>0$	
16	$e^{-a t} \cos \omega_{0} t u(t)$	$\frac{a+j \omega}{(a+j \omega)^{2}+\omega_{0}^{2}}$	$a>0$		
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$			
18	$\frac{W}{\pi} \operatorname{sinc}(W t)$	$\operatorname{rect}\left(\frac{\omega}{2 W}\right)$			
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\omega \tau}{4}\right)$			
20	$\frac{W}{2 \pi} \operatorname{sinc}^{2}\left(\frac{W t}{2}\right)$	$\Delta\left(\frac{\omega}{2 W}\right)$			
Fourier Transform Operations		- 1			
Operation		$g(t)$	$G(\omega)$		
Addition Scalar multiplication Symmetry		$g_{1}(t)+g_{2}(t)$	$G_{1}(\omega)+G_{2}(\omega)$		
		$k g(t)$	$k G(\omega)$		
		$G(t)$	$2 \pi g(-\omega)$		
Scaling		$g(a t)$	$\frac{1}{\|a\|} G\left(\frac{\omega}{a}\right)$		
Time shift		$g\left(t-t_{0}\right)$	$\underset{G(\omega) e^{-j \omega t_{0}}}{\|a\|}$		
	y shift	$g(t) e^{j \omega_{0} t}$	$G\left(\omega-\omega_{0}\right)$		
Time convolution		$g_{1}(t) * g_{2}(t)$	$G_{1}(\omega) G_{2}(\omega)$		
Frequency convolution		$g_{1}(t) g_{2}(t)$	$\frac{1}{2 \pi} G_{1}(\omega) * G_{2}(\omega)$		
Time differentiation		$\frac{d^{n} g}{d t^{n}}$	$(j \omega)^{n} G(\omega)$		
Time integration		$\int_{-\infty}^{t} g(x) d x$	$\frac{G(\omega)}{j \omega}+\pi G(0) \delta(\omega)$		

