Lectrical Engineering Lepartment

EE370: Communications Engineering I (091)

Dr. Ali Muqaibel

Quiz 6: Line Coding and Nyquist Criteria

-1 points for not writing your serial #

Name:

KEY

Ver. 1

1. Consider the following sequences of 1's and 0's: 0 1 1 0 1

Sketch the wave form using the following methods of representing symbols 1 and 0 (line coding):

- (a) On-off signaling (RZ).
- (b) Manchester Coding: A high to low transition represents 1 and a low to high transition represents zero.
- (c) Bipolar (NRZ)

(6 points)

Which code/codes of the above line codes has zero DC?

(b) (c) in general.

 \bigcirc

Which one of the line codes required minimum bandwidth? (c)

 \bigcirc

2. Binary data rate of 1 Mbit/s is to be transmitted using Nyquist criterion pulses with $P(\omega)$ as shown in the figure. The frequencies f_1 and f_2 (in hertz) of the spectrum are adjustable. The channel available for the transmission of this data has a bandwidth of 900 kHz, Determine f_1 and f_2 and the roll-off factor. (4 points)

$$B_{T} = \frac{R_{b}}{2} + r \frac{R_{b}}{2}$$

$$B_{T} = \frac{(1+r)}{2} R_{b}$$

$$I + r = \frac{2B_{T}}{R_{b}}$$

$$I = \frac{2B_{T}}{R_{b}} - 1 = \frac{2(9\infty k)}{1 \text{ M}} - 1 = 0.8$$

$$I = \frac{R_{b}}{2} + r \frac{R_{b}}{2} + r \frac{R_{b}}{2} = \frac{9\infty kH_{3}}{2}$$

$$I = \frac{R_{b}}{R_{b}} - 1 = \frac{2(9\infty k)}{1 \text{ M}} - 1 = 0.8$$

$$|f_{2} = 900 \text{ kHz}$$
 $r = \frac{2(800 \text{ k})}{1 \text{ M}} - 1 = 0.6$

Good Luck, Dr. Ali Muqaibel