King Fahd University of Petroleum & Minerals

Electrical Engineering Department

EE370: Communications Engineering I (101)

Dr. Ali Muqaibel

Quiz 4: Frequency Modulation

Serial # O -1 for not writing your serial number

Name: KEY

1) Choose the correct answer:

The modulating frequency in frequency modulation is increased from 10 kHz to 20 kHz. The

a) doubled

١

١

ţ

4

- b) halved (c) increased by 20 kHz d) increased tremendously e) not affected

2) What is the main disadvantage with direct method of frequency modulation?

Frequency unstability.

3) What are the main two blocks in a band-pass limiter?

havellimiter + Banpan filter

4) A single-tone FM signal is given by $\varphi_{FM}(t) = 10$ signal is given by $\varphi_{FM}(t) = 1$

a) Find the modulation index and estimate the bandwidth of the signal.

$$w_{1} = 16\pi \times 10^{6} + 4\pi \times 10^{6} \cos (2\pi \times 10^{3}t)$$
 $t_{1} = 8 \times 10^{6} + 2 \times 10^{4} \cos (2\pi \times 10^{3}t)$

$$2(\delta f + 13) = |42 K | + 3 | \beta = \frac{\Delta f}{18} = \frac{26K}{1 K} = |20|$$

3 b) if $k_f=10/\pi$ kHz/V, what is the message m(t). Hint: check the units for k_f

10 k 2π = Kf = 20 kmd/v

$$\varphi_{FM}(t) = 10 \cos \left(\frac{16\pi \times 10^{6} t + 20 \sin \left(\frac{10\pi \times 10^{3} t}{16\pi \times 10^{6}} \right)}{16\pi \times 10^{6} t + 20 \sin \left(\frac{10\pi \times 10^{3} t}{16\pi \times 10^{6}} \right)}$$

$$\psi_{FM}(t) = A \cos \left(w_{c} t + k_{f} q(t) \right)$$

$$\psi_{FM}(t) = \frac{10 \cos \left(w_{c} t + k_{f} q(t) \right)}{16\pi \times 10^{6} t + 20 \sin \left(\frac{10\pi \times 10^{3} t}{16\pi \times 10^{6}} \right)}$$

=

$$m(t) = \frac{2\pi \times 10^{3}}{10^{3}} \times (2\pi \times 10^{3} \text{ t}) = \frac{2\pi \times 10^{3}}{10^{3}} \text{ V}$$