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In digital communication systems, the information is always assumed to be generated in the 
form of binary data with values of 0 or 1. The origin of the digital binary information to be 
transmitted over digital communication systems may be an analog signal such as an audio 
signal or an analog picture that have been sampled and quantized and then converted to a 
PCM signal. The origin of the digital binary information may also be digital data in the form 
of text. In any case, the purpose of this chapter is to study the transmission of the 
information in the form of a digital binary signal.  

7.1 Line Coding 
Given some binary information, the binary bits are not transmit through the channel as 1’s 
and 0’s but is used to generate a voltage signal that represents the information we would 
like to transmit. There are different forms of signals (called Line Codes) that can be used to 
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represent the information. The terms Return to Zero (RZ) and Non–Return to Zero (NRZ) will 
be used in describing these signal.  

1. UOn–Off (NRZ):U In this form of line codes, a bit of 1 is represented by some 
positive voltage (+5 volts for example) and a bit of 0 by 0 volts (justifying 
calling this signal On–Off). The pulses corresponding to binary 1 remain at the 
positive voltage for the whole duration of the bit period (it does not return to 
zero at any time during the bit period justifying calling this line code NRZ). 

0 1 0 1 1 1 0 0 1Bit Value

5 V

0 V

 

2. UPolar (NRZ):U In this line codes, a bit of 1 is represented by some positive 
voltage (+5 volts for example) and a bit of 0 is represented by negative of that 
voltage (so it would be –5 volts). The pulses corresponding to binary 1 and 
binary 0 remain at the positive and negative voltages, respectively, for the 
whole duration of the bit period (they do not return to zero). The advantage 
of this line code over the On–Off (NRZ) is that it has zero–DC value when the 
number of binary 1’s is equal to the number of binary 0’s. A line code with 
zero–DC is desired in some applications that require that the transmitted 
signal to have no DC. 

0 1 0 1 1 1 0 0 1Bit Value

–5 V

0 V

5 V

 

3. UOn–Off (RZ):U In this line codes, a bit of 1 is represented by some positive 
voltage (+5 volts for example) for half of the bit period and zero in the other 
half of the bit period and a bit of 0 is represented by zero for the whole bit 
period. This is why this line code is a return–to–zero line code (because any 
pulse corresponding to binary 1 always returns back to zero). The advantage 
of this line code over the previous line codes is that a long sequence of ones 
always has transitions at the center of each bit and therefore bit 
synchronization becomes easy for long sequences of ones. Long sequence of 
zeros is still difficult to be synchronized.  
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0 1 0 1 1 1 0 0 1Bit Value

5 V

0 V

 

4. UPolar (RZ):U In this line code, a bit of 1 is represented by some positive voltage 
(+5 volts for example) for half of the bit period and zero in the other half of 
the bit period and a bit of 0 is represented by the negative of that voltage for 
half of the period and zero for the other half. The advantage of this line code 
over the previous ones is that long sequences of ones or zeros have 
transitions at the center of each bit and therefore bit synchronization 
becomes easy for long sequences of ones or zeros. Also, this line code has 
zero DC when the number of ones and zeros is the same.  

0 1 0 1 1 1 0 0 1Bit Value

5 V

0 V

–5 V
 

5. UBi-Phase (Manchester):U The problem with the upper line codes is that they 
either have non-zero average or they do not provide sufficient information 
that allows the transmitter and receiver to synchronize with each other. So, 
if there is a long sequence of 0s or long sequence of 1s, the receiver and 
transmitter may loose synchronization. The Polar (RZ) solves these problems 
but it is a three level signal (the signal takes one of three levels (+5, 0, or – 
5). A transistor that is working a switch has only two states (On  
saturation, and Off  cutoff). So, we can get all the advantages of the 
different line codes yet use a line code that has two levels only. The way the 
Biphase, or Manchester, code is constructed is that a bit of 0 is represented 
by a 0V signal for half the bit period and +5V for the second half, while a bit 
of 1 is represented by a +5V signal for half the bit period and 0V for the 
second half. So, while all the codes transmit the information in the level of 
the signal, this line code actually transmits the information in the transitions 
that occur in the middle of each bit. This is illustrated by the arrows in the 
middle of each bit period. A transition going up in this case means a bit of 
zero and transition going down is a bit of 1. To get an average of zero, we 
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can use the two levels of +5V and -5V. Note that while the average of some 
line codes is zero when the number of zeros is equal to ones, this is not a 
necessary condition for the Manchester line code to have zero average since 
each bit whither it is 0 or 1 has half of its duration at -5V and the other half 
at +5.  It is most used by IEEE 802.3, baseband coax and twisted pair CSMA 
/CD bus LANs. 

0 1 0 1 1 1 0 0 1Bit Value

5 V

0V or -5V

 

6. UBipolar (RZ):U In this line code, a bit of 0 is represented by zero volts for the 
whole bit period. A bit of 1 is represented by some positive voltage (+5 volts 
for example) for half of the bit period and zero in the other half of the bit 
period. However, the next bit of one (wither it is the next bit or 1000 bits 
later is represented by the negative of the voltage for half of the bit period 
and zero for the second half. So, the bits of 1’s are represented by 
alternating positive and negative pulses. This insures that the DC value of 
the signal is always zero even if we have non–equal number of ones and 
zeros.  

 

0 1 0 1 1 1 0 0 1Bit Value

5 V

0 V

–5 V
 

Performance Criteria of Line Codes 
• Zero DC value 

• Inherent Bit-Synchronization: rich in transitions 

• Average Transmitted Power for a given Bit Error Rate (BER): power efficiency. 

• Spectral Efficiency (Bandwidth): inversely proportional to pulse width. 

• Error detection and correction capabilities. 

• Insensitivity to signal inversion. 

Transparent Codes: a line code is said to be transparent if the bit pattern does not affect the 
accuracy of the timing information.  
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Advanced Examples in Line Coding: High Density Bipolar (HDBN) 
Because the AMI is not transparent other methods are used to prevent long strings of zeros. 
HDBN also does not have any dc value and have the same data rate. 

In this case when a run of N+1 zeros happens, they will be replaced by a code of length N+1 
containing AMI violation. 

The most popular form of HDBN is HDB3; which uses to special sequences: 000V and B00V. 

B00V is used when there is an even number of ones following the last special sequence and 
000V is used when there are an odd number of ones following the last special sequence. 
Consecutive V pulses alternate in sign to avoid dc wander. 

Because violation just happens at the fourth bit of the special code, it can be easily detected 
and will be replaced by a zero at the receiver. 

It is also capable of error detecting because a sign error would make the number of bipolar 
pulses between violations even instead of odd. 

Another way to avoid long string of zeros or ones is using the BNZS code which is similar to 
HDBN. 

For example in B8ZS a string of 8 zeros will be replaced by 000VB0VB where V’s are bipolar 
violation and B’s are valid bipolar signals. 

B8ZS is most used in DS1 signals and in North America. 

 

7.2 Power Spectral Density of Line Codes 
The line codes discussed in the previous lecture generally not the best line codes to be used 
because all of these line codes have the form of pulses. As it is known, pulses have 
spectrums of the form of sinc functions. So, in theory, channels with infinite bandwidths are 
required to transmit any of the line codes discussed previously. To study the performance of 
a line code we need to consider the Power Spectral Density (PSD) of line codes. The reason 
for not being able to use the Fourier transform to find the spectrum of a line code is that 
the information signals that generate a line code is a stochastic (non–deterministic) signal, 
and the Fourier transform cannot be applied for non–deterministic signals. To study the 
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spectrum of stochastic signals, we use the PSD, which shows the distribution of the signal 
power versus the frequency.  

Consider the following Polar NRZ line code y(t). This signal can be decomposed into two 
signals, the information signal x(t)  represented by a sequence of delta functions that have 
positive or negative areas depending on the corresponding bits (0’s or 1’s) that is convolved 
by a pulse signal p(t). 

 

0 1 0 1 1 0 1 0 1Bit Value

1 V

0 V

–1 V

y(t)

0 1 0 1 1 0 1 0 1Bit Value

1 V

0 V

–1 V

x(t)

Bit Value

1 V

0 V

–1 V

p(t)

t

t

t

Tb 2Tb 3Tb 4Tb 5Tb 6Tb 7Tb 8Tb

Tb 2Tb 3Tb 4Tb 5Tb 6Tb 7Tb 8Tb

Tb

 

So,  

 ( ) ( )* ( ).y t p t x t=  

The signal y(t)  in the above relation is similar to the output that we obtain when we pass a 

signal x(t)  through a filter with impulse response  p(t) and frequency transform  P(ω). So, the 
we can obtain y(t)  using the following block diagram. 

Filter
Impulse response  p(t)

Transfer Function  P(ω)
x(t)

PSD is Sx(ω)

y(t)

PSD is Sy(ω)
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A property of the PSD of a signal that passes through a filter is given as 

 
2( ) ( ) ( ).y xS P Sω ω ω=   

Using the same concept of the PSD, transmitting the signal y(t)  through a channel with 

impulse response  c(t)  and transfer function C(ω) as shown below  

Filter
Impulse response  p(t)

Transfer Function  P(ω)
x(t)

PSD is Sx(ω)

y(t)

PSD is Sy(ω)

Transmission Channel
BW = Bc Hz

Impulse response  c(t)
Transfer Function  C(ω)

r(t)

PSD is Sr(ω)
 

we see that the PSD of the received signal r(t)  is 

 
2( ) ( ) ( ).r yS C Sω ω ω=  

Knowing that the PSD gives the spectrum of random signals (so the maximum frequency at 
which the PSD of a signal is non–zero can be considered as the bandwidth of that signal), we 
see that for a signal y(t)  to be transmitted properly through a channel, the bandwidth of the 
channel Bc must at least be as much as the bandwidth of the transmitted signal y(t) (or the 
bandwidth of y(t)  must be less than or equal to Bc). 

This means that the line codes discussed in the previous lecture are in theory not suitable for 
most channels (and in practice they are not). The reason is that these line codes are built on 
pulses (similar to the rect function) so they have very high bandwidth. Unless the channel 
has a very high bandwidth to accommodate this wideband signal, part of the transmitted 
signal will be cutoff by the channel and the received signal will be different from the 
transmitted signal. When part of the spectrum of a transmitted signal is cutoff by the 
channel, a phenomenon known as Inter–Symbol Interference (ISI) occurs. When square 
pulses (which have high bandwidth) are transmitted, channels with limited bandwidth 
remove the high frequency components of the transmitted signal. This causes the pulse of 
every bit to extend beyond its borders (instead of the pulse being confined to a bit period Tb, 
the pulse depending on how much was cut from the spectrum of the transmitted signal will 
extend its boundaries to several bit symbols. For some applications, this elongation of the 
pulse of a specific bit may effectively extend over 100 bits on each side. Clearly if every bit 
extends on each side over many bit periods, interference between the different bits will 
make it very difficult to detect the received bits. Therefore, the effect of ISI is that it will 
make it very difficult for the receiver to detect the transmitted bits. The extension of a pulse 
over many bit periods is shown in the next figure 
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Filter
Impulse response  p(t)

Transfer Function  P(ω)
x(t)

PSD is Sx(ω)

y(t)

PSD is Sy(ω)

Transmission Channel
BW = Bc Hz

Impulse response  c(t)
Transfer Function  C(ω)

r(t)

PSD is Sr(ω)

p(t)x(t)

Tb

t
Tb 2Tb 3Tb Tb

t t

y(t)

Sy(ω)

2Tb 3Tb

Bc

ω

C(ω)

ω

Sr(ω)
Parts

Filtered out

–Bc Bc

ω
π/Tb 2π/Tb 3π/Tb π/Tb 2π/Tb 3π/Tb

Tb
t

r(t)

2Tb 3Tb

It is clear from the above figure that the square pulses in y(t)  got spread out in the received 
signal r(t). If the spreading is so severe, it may result in bit detection errors. 

To reduce ISI in a signal, we need to change the PSD of the transmitted signal y(t). As seen 

above, Sy(ω)  can be modified by either modifying  Sx(ω)  or modifying P(ω). Since we have 

no control over Sx(ω) because it is the PSD of the original information bits, we only can 

modify Sy(ω) by modifying P(ω), and hence modifying p(t), which is the pulse used in the line 
code.  

It is clear that if we use a pulse that looks like a sinc function, then its spectrum will be 
similar to a rect function. In fact, the sync function is in theory the best signal to be used in 
terms of the required bandwidth since its spectrum occupies the minimum band. The 

problem with sinc pulses is that they extend in time theoretically from t = –∞  to ∞ (in 
practice the sinc extends over a range around t = –100Tb  to  100Tb depending on the 

requirements), so we would have to start generating a sinc pulse in theory at t = –∞ to 

transmit a bit at t = 0 and then continue generating this pulse until t = ∞. This is not practical, 
so we will search for other pulses that are time–limited and do not cause ISI.  

0.4

0.6

0.8

1

1.2

w
er

 d
en

si
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On-Off
(NRZ)

Bipolar (NRZ)
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7.3 Pulse shaping and ISI 

After choosing the line code, we need to choose the pulse shape for good PSD (power 
spectral density) 

Channels are bandlimited (For example some twisted pair cables are limited to 1MHZ). The 
limited bandwidth results in time unlimited pulse (dispersion)  which results in ISI (Inter-
symbol  Interference). 

ISI which is spreading of a pulse beyond its interval Tb ia the major limiting factor in digital 
communications. As we increase the data rate, the pulses get closer to each other and ISI 
become higher. ISI is cause by bandlimitation. 

 

 

 

 

 

So how to get ZERO ISI? 

Solution #1 Pulse shaping  
Nyquist Criterion for ZERO ISI : Nyquist achieves zero ISI by choosing a pulse shape that has 
a nonzero amplitude at its center and zero amplitude at t=±nTb (n=1,2,3,……). 

Tb is the separation between successive pulses. Tb=1/Rb 

𝑝(𝑛𝑇𝑏) = �1 𝑛 = 0
0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑛

� 

Which pulse satisfies that with minimum bandwidth requirements? 

𝑝(𝑡) = 𝑠𝑖𝑛𝑐(𝜋𝑅𝑏𝑡) 

𝑃(𝜔) =
1
𝑅𝑏

𝑟𝑒𝑐𝑡 �
𝜔

2𝜋𝑅𝑏
� 

Problems with sinc? 

1) Starts at -∞ and ends at +∞. We have to truncate  but the bandwidth will be greater 
than  Rb/2. 

2) Decays very slowly 1/t rate. In real life things will not be perfect. There is always 

time jitter (deviation in time). There will be a time error ∑ 1
𝑛

  (does not converge. 

Add up to a large value) . 

Wrong decision (high not low) 

Band limited 

Channel 
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The solution to the sinc problem is that we may choose a pulse that decay at a faster rate 
and it will require more bandwidth rRb/2       0 ≤ 𝑟 ≤ 1. To find this pulse, let us examine 
Nyquist criteria for zero ISI in the frequency domain. 

�̅�(𝑡) = 𝑝(𝑡)𝛿𝑇𝑏(𝑡) = 𝛿(𝑡)  Nyquist criteria for zero ISI. 

Take Fourier transform of both sides 

1
𝑇𝑏
∑ 𝑃(𝜔 − 𝑛𝜔𝑏) = 1∞
𝑛=−∞   𝜔𝑏 = 2𝜋

𝑇𝑏
= 2𝜋𝑅𝑏 

This means the pulse that have zero ISI, should have a spectrum if shifted to the multiple 
value of the rate should result in a constant. 

Nyquist proposed a condition for pulses p(t) to have zero–ISI when transmitted through a 
channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass. 
Nyquist proposed that a zero–ISI pulse p(t) must satisfy the condition 

 
1 0

( )
0 , 2 , 3 ,b b b

t
p t

t T T T
=

=  = ± ± ± 

 

A pulse that satisfies the above condition at multiples of the bit period Tb  will result in zero–
ISI if the whole spectrum of that signal is received. The reason for which these zero–ISI 
pulses (also called Nyquist–criterion pulses) cause no ISI is that each of these pulses at the 
sampling periods is either equal to 1 at the center of pulse and zero the points other pulses 
are centered. 

In fact, there are many pulses that satisfy these conditions. For example, any square pulse 
that occurs in the time period –Tb  to Tb or any part of it (it must be zero at –Tb  and Tb) will 

satisfy the above condition. Also, any triangular waveform (∆ function) with a width that is 

less than 2Tb will also satisfy the condition. A sinc function that has zeros at t = ±Tb, ±2Tb, 

±3Tb, … will also satisfy this condition. The problem with the sinc function is that it extends 
over a very long period of time resulting in a lot of processing to generate it. The square 
pulse required a lot of bandwidth to be transmitted. The triangular pulse is restricted in time 
but has relatively large bandwidth. 

There is a set of pulses known as raised–cosine pulses that satisfy the Nyquist criterion and 
require slightly larger bandwidth than what a sinc pulse (which requires the minimum 
bandwidth ever) requires. 

The spectrum of these pulses is given by 
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( ){ }/ 21 1 sin
2 2 2

( ) 0
2

1
2

b b
x

x

b
x

b
x

P

π ω ω ωω ω
ω

ωω ω ω

ωω ω

   −
  − − <      
= > +

 < −



, 

where ωb is the frequency of bits in rad/s (ωb = 2π/Tb), and ωx is called the excess bandwidth 
and it defines how much bandwidth would be required above the minimum bandwidth that 

is required when using a sinc pulse. The excess bandwidth  ωx  for this type of pulses is 
restricted between 

 0
2

b
x

ωω≤ ≤ . 

Sketching the spectrum of these pulses we get 

 

ωb/2
=π/Tb

P(ω)

ω

ωxωx

ωb/2 + ωxωb/2 – ωx
 

We can easily verify that when  ωx = 0, the above spectrum becomes a rect function, and 

therefore the pulse  p(t)  becomes the usual sinc function. For ωx = ωb/2, the waveform is 
similar to a sinc function but decays (drops to zero) much faster than the sinc (it extends 
over 2 or 3 bit periods on each side). The expense for having a pulse that is short in time is 

that it requires a larger bandwidth than the sinc function (twice as much for ωx = ωb/2). 

Sketch of the pulses and their spectrum for the two extreme cases of  ωx = ωb/2  and ωx = 0  
are shown below.  
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t

p(t)ωx = 0
“Sinc”

ωx = ωb/2

2TbTb 3Tb–3Tb –2Tb –Tb

1

 

The above blue figure should have double zero crossing 

ωb/2
=π/Tb

P(ω)

ω

ωx = 0
“Sinc”

ωb
=2π/Tb

ωx = ωb/2

ωb/2ωb/2

 

 

We can define a factor  r  called the roll–off factor to be 

 
2Excess Bandwidth

Minimum Bandwidth / 2
x x

b b

r ω ω
ω ω

= = = . 

The roll–off factor r specifies the ratio of extra bandwidth required for these pulses 
compared to the minimum bandwidth required by the sinc function.  

For r=1, (full roll-off factor). The above equations for raise d cosine becomes 

𝑃(𝜔) = 𝑐𝑜𝑠2 �
𝜔

4𝑅𝑏
� 𝑟𝑒𝑐𝑡 �

𝜔
4𝜋𝑅𝑏

� 

And     𝑝(𝑡) = 𝑅𝑏
𝑐𝑜𝑠4𝜋𝑅𝑏
1−4𝑅𝑏

2𝑡2
𝑠𝑖𝑛𝑐(𝜋𝑅𝑏𝑡) 
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From   Uhttp://en.wikipedia.org/wiki/Raised-cosine_filter U 

 

 

 

Using Matlab/Toolbox/Communications/Raised Cosine Filtering 

This step demonstrates the effect that changing the rolloff factor from .5 (blue curve) to .2 
(red curve) has on the resulting filtered output. The lower value for rolloff causes the filter to 
have a narrower transition band causing the filtered signal overshoot to be greater for the 
red curve than for the blue curve. 
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http://en.wikipedia.org/wiki/Raised-cosine_filter�
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Solution #2  Controlled ISI (Duobinary Pulses) 
Signaling with controlled ISI : Partial Response Signals. Pulse shaping achieves zero ISI at the 
cost of reduced the rate (-ve) or by increased bandwidth. 

In controlled ISI we allow the pulse to expand more which reduces the needed bandwidth. 
Consider the duobinary pulse. 

𝑝(𝑛𝑇𝑏) = �1 𝑛 = 0,1
0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑛

� 

If two consecutive bits are 1’s the received voltage will be 2. If two consecutive bits are 0’s 
the received voltage will be -2. If the two consecutive bits are opposite the voltage will be 0. 

Error detection capability: we cannot have +2 -2 or -2 +2 

Full value of the same polarity have even number of zeros in between

 
 
Rb=1; % Assume the rate Rb=1 
t=-10:0.01:10; 
p=sin(pi*Rb*t)./(pi*Rb*t)./(1-Rb*t); 
p2=sin(pi*Rb*(t-1))./(pi*Rb*(t-1))./(1-Rb*(t-1)); 
  
plot (t,p ,t,p2,t,p+p2) 
axis([-7 7 -0.5 2]) 
 
Full values of the opposite polarity have odd number of zeros in between 

The pulse that does that 

𝑝(𝑡) =
sin (𝜋𝑅𝑏𝑡)

𝜋𝑅𝑏𝑡(1 − 𝑅𝑏𝑡)
 

𝑃(𝜔) =
2
𝑅𝑏

𝑐𝑜𝑠 �
𝜔

2𝑅𝑏
�𝑟𝑒𝑐𝑡 �

𝜔
2𝜋𝑅𝑏

�𝑒−𝑗
𝜔
2𝑅𝑏  

+ve:  minimum required bandwidth  Rb/2 Hz. 

+ve: rate of decay 1/t2 .  

+ve: still start at -∞ but easier to approximate compared with sinc. 
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Example: duobinary signaling   

Data 1 1 0 1 1 0 0 0 1 0 1 1 1 
 + + - - + + - - + + + + + 
  + + + + - - - - - - + + 
Duobinary 1 2 0 0 2 0 -2 -2 0 0 0 2 2 
Detected 1 1 0 1 1 0 0 0 1 0 1 1 1 
 

The decoding rule is the relation between the received Duobinary and the detected 
sequence (0= change, +2 or -2 means no change). 

Differential Precoding 
The problem with the above example is that the decoding is differential and if there is an 
error it will propagate. 

The problem of error propagation is solved using differential encoding (precoding).  

Precoding means  

1 sends identical like previous 

0 change previous transmission 

The precoded sequence will be insensitive to polarity change (flipping does not affect) 

Example : Differential coding (pre-coding)+ Duobinary pulse 

Data 1 1 0 1 1 0 0 0 1 0 1 1 1 
Precoded 1 1 0 0 0 1 0 1 1 0 0 0 0 
 + + - - - - - - + + - - - 
  + + - - + + + + - - - - 
Duobinary 1 2 0 -2 -2 0 0 0 +2 0 -2 -2 -2 
Detected 1 1 0 1 1 0 0 0 1 0 1 1 1 
 

The decoding rule become easier (advantage) 

0 for 0 

-2 or +2 for 1 

Simplified decision (independent of previous bit) and no error propagation  

Note: designing for a specific pulse shape might have practical limitations, especially that the 
designed pulse should be at the receiver side. 

7.7 M-ary Communications  
New applications call for high data rate but we are limited! 

Baseband Channel Capacity= 2*BW(Symbols/sec)          (not bits/sec) 
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M-ary Communications means communication using M symbols. 

Multi-amplitude 
Example M=4     (4-ary or quaternary).   

Two binary digits can be transmitted by one  4-ary symbol   (RZ) 

11   3A 
   A 
01    
10    
   -A 
00   -3A 
  

IM=log2 M    binary digits/symbol 

Notice to make the above quaternary system equivalent to the binary system in terms of 
BER, the spacing between the level is kept 2A 

P2-ARY=(A2+ A2)/2= A2 

P4-ARY=(A2+9 A2+ A2+9 A2)/4=5 A2=A2+4 A2 

Practice: show that the power required for 8-ary multi-amplitude case will be  

P8-ARY=…………………… =A2+20 A2 

Example   How many symbols are required to send 3000 bits using 2-ary (binary system),  

8-ary system, 64-ary ? 

Ans.   3000, 1000, 500 symbols 

For multi-amplitude communications 

+ve the transmission rate, Rb , increase by a factor of IM. 

-ve (the cost) to maintain the same bit error rate (BER), power increase is proportional to M2. 

Bandwidth is independent of M  (the amplitude changes and not the duration) 

Alternatively rather than increasing the rate, we can reduce the bandwidth by a factor of IM at 
the cost of increased duration and power 

BER BW Power Rate 
fixed fixed increase increase 

 

Another way to increase the signaling is 

01 

10 

11 

00 
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Orthogonal Signaling 

� 𝜑𝑖(𝑡)𝜑𝑗(𝑡)
𝑇𝑏

0
𝑑𝑡 = �

𝑐 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

� 

Example  𝜑𝑘(𝑡) = 𝑠𝑖𝑛 �2𝜋𝑘𝑡
𝑇𝑏

�      0 < 𝑡 < 𝑇𝑏             k=1,2,……..M 

Highest pulse frequency =M/Tb                     Bandwidth =M/Tb 

The power is independent M 

BER BW Power Rate 
fixed increase fixed increase 

increase fixed fixed Increase 

Compare Multi-amplitude with Orthogonal M-ary signaling 

 BW Power When to use 
Multi-amplitude Independent of  M Proportional to M2 BW at premium like 

telephone lines 
Orthogonal Proportional to M Independent of  M Power at premium 

like space 
communications  

 

Binary is the single most important way for signaling in practice (simplicity) 
M-ary is used in many applications like dial up modems and satellite communications. 

Example  

A satellite transponder has a bandwidth of 36 MHz. Earth stations use raised cosine filters 
with M-ary PSK modulation to transmit 256 Mbps. What is the minimum possible value for 
M and the associated roll-off factor?  Hint: satellite communication indicate it is Passband 
communications 

Solutions 

BW=(1+ r )Rs=(1+ r )Rb/log2M 

(1+ r )=(BW*log2 M)/Rb  . Minimum log2M =8 => M=256, related r=0.125 . 

 7.8 Digital Carrier Systems  
So far we have been dealing with UbasebandU transmission which is good for many applications 
over (twisted pair cables, co-axial cables, fiber….) 

UPassbanUd communication or carrier communication requires modulation (shifting the 
frequency continent). Passband communications is needed for frequency division 
multiplexing (FDM), or to control the propagation characteristics and antenna size.  

 Maximum symbol rate 
Baseband B Hz 2B 
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Passband B Hz B 
 

Types of digital carrier systems  

1. Amplitude shift keying (ASK) : on-off keying (OOK) is one example 
2. Phase shift keying (PSK) 
3. Frequency shift keying (FSK): can be viewed as sum of two ASK(OOK) with f1 and 

f2. FSK is in principle two ASK with two different frequency. Hence the spectrum of 
FSK is the sum of two ASK spectra at the two different frequencies. It can be shown 
that by properly choosing the two frequencies the discrete component can be 
eliminated. Also that the bandwidth of FSK is higher than that of ASK and PSK. 

See the three figures below: 

Note that the use of rectangular pulses is for illustration: we need to use pulse shaping to 
eliminate (ISI) for passband systems too. 

Comparing the above digital carrier systems, PSK has some advantage in terms of power 
efficiency compared with FSK and ASK. PSK is based on the polar representation (code) 
which is more efficient than the on-off signaling. This is why PSK requires 3dB less power to 
achieve the same BER. 
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De-modulation 
• Coherent detection ( relatively complicated, good at low SNR, excellent 

performance) 

• Non-coherent 

ASK  
Non-coherent otherwise we lose simplicity which the main reason for using ASK. 

PSK 
• Coherent (similar to analog) 

• Non-coherent: using ingenuous method: We need to differentially encode the data, 
the resultant is known as differential PSK  (DPSK) 

Differential encoding means,  

• if the data is 1=> same encoding as before 

• If the data is 0=> negative of the previous 

UFigure 7.30b 

Example 

 1 1 0 1 1 0 0 0 1 1 
           
           
 

 

If identical like previous 

𝑦(𝑡) = 𝐴2

2
(1 + cos (2𝜔𝑐𝑡)   and 𝑧(𝑡) = 𝐴2

2
   => bit was 1 

If different than previous 

𝑦(𝑡) = −𝐴2

2
(1 + cos (2𝜔𝑐𝑡)   and 𝑧(𝑡) = −𝐴2

2
   => bit was 0 

As an example decode the above sequence and demonstrate that you can recover the 
original data. 
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FSK 
Can be demodulated either coherently or non-coherently: 

Build UFigures 7.31U yourself!  

 

Digital Signal Transmission Using QAM 
 

We may use M-ary QAM with different amplitudes and phases U(Figure 7.32) 

QAM  is used for telephone line modems. Modulate-demodulate=(modem) 

m1(t) and m2(t) are binary polar pulse sequences. 

When M=4, QAM is equivalent to QPSK. 

 

 We can use M=16 
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𝑝𝑖(𝑡) = 𝑎𝑖𝑝(𝑡)𝑐𝑜𝑠𝜔𝑐𝑡 + 𝑏𝑖𝑝(𝑡)𝑠𝑖𝑛𝜔𝑐𝑡 = 𝑟𝑖𝑝(𝑡)𝑐𝑜𝑠(𝜔𝑐𝑡 − 𝜃𝑖) 

i=1,2,……..,16 

where 𝑟𝑖 = �𝑎𝑖2 + 𝑏𝑖2      and 𝜃𝑖 = 𝑡𝑎𝑛−1 𝑏𝑖
𝑎𝑖

 

 

  

7.9 Digital Multiplexing  
 

Several low-bit-rate singles can be multiplexed to form a one high-bit rate signal to be 
transmitted over a high-frequency medium. We use TDM with overhead bits to identify the 
beginning of the frame. 

Types of Time-division multiplexing of digital signals  
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In the majority of cases not all incoming channels are active all the time. Some of them are 
idle. We can accept more inputs assuming that with a very low probability the system will be 
overloaded. Example (TDMA for satellite) 

Asynchronous Channels and Bit Stuffing 
Example: a 1000km coaxial cable carrying 2*108 pulses per second. Assuming a nominal 
propagation speed 2*108 m/s  it takes  1000km/2*108 m/s  =1/200 sec of transit time and 1 
million pulses will be in transit. If the cable temperature increased by 1oF the propagation 
velocity will increase by 0.01%. The transit pulses will arrive sooner…. We need to control 
the rate. it is a synchronous . empty slots need to be filled with dummy digits (pulse stuffing) 
and we also need elastic store (justification buffer) 

Another source of asynchronous-ness is imperfect clocking. 

What is positive and negative pulse stuffing? p345-346 

Digital Hierarchy 
DS=Digital signal level 

Signals with appropriate format need not be voice signals 

 

 

CCITT= Consultative Committee on International Telephony and Telegraphy (now ITU: 
International Telecommunication Union ) 
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