KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

SECOND SEMESTER 2010-2011 (102)

Course Title:	Communication Engineering I
Course Number:	EE 370

Exam Type:	MAJOR EXAM I
Date:	March 23, 2011
Time:	7:00 pm – 8:30 pm (1 & 1/2 hours)

Student Name:	Key	
Student ID:	00000	
Section:		
Serial Number:		_

GRADING				
Question 1	10			
Question 2	10			
Question 3	20			
Question 4	20			
Total:	60			

Be neat, organized, and show all your work and results.

Question 1:

Mark the following clearly as true (T) or false (F).

1	DSBSC has a power efficiency of about 67% which makes it more power efficient compared to AM signal having a power efficiency of 33% at best.	(F)
2	AM signal can be demodulated coherently	(T)
3	When using switching modulators for DSBSC, it is necessary to use double balanced modulators.	(F)
4	In compact trigonometric Fourier series, $(C_n = \sqrt{a_n^2 + b_n^2})$ is complex and it contains the amplitude and phase information of the frequency spectra.	(F)
5	The amplitude spectrum of a real signal is even and the phase spectrum is odd.	(T)
6	Both AM and DSBSC modulations need twice the bandwidth of the modulating signal and a carrier frequency of at least twice the bandwidth of the modulating signal.	(F)
7	Distortionless systems have constant amplitude spectrum and exponential phase spectrum.	(F)
8	The time constant, RC, of the low-pass filter for the envelope detector depends on the value of the modulation index.	(T)
9	In QAM demodulation, phase mismatch is less damaging than frequency mismatch	(T)
10	Band-limited signals have infinite bandwidth.	(F)

Question 2:

- a) Find the complex (exponential) Fourier series of $x(t) = \cos(2000\pi t) + \sin^2(2000\pi t)$. (4 marks)
- b) Plot the amplitude spectrum and phase spectrum (two sided) of the signal x(t). (4 marks)
- c) Show whether x(t) is a power or energy signal and find its corresponding power or energy if possible. (2 marks)

(a)
$$\chi(I_1) = \cos(2\cos \pi i t_1) + \frac{1}{2} \begin{bmatrix} 1 - \cos 4 \cos \pi t_1 \end{bmatrix}$$

$$= \frac{1}{2} + \cos(2\cos \pi i t_1) - \frac{1}{2} \cos 4 \cos \pi t_1$$

$$= \frac{1}{2} + \frac{1}{2} \begin{bmatrix} \frac{1}{2}\cos \pi t_1 \\ -\frac{1}{2}\cos \pi t_1 \\ -\frac{1}{2}\cos \pi t_1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} \frac{1}{2}\cos \pi t_1 \\ + \frac{1}{2}\end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2}\cos \pi t_1 \\ -\frac{1}{2}\cos \pi t_1 \\ -\frac{1}{2}\cos \pi t_1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} \frac{1}{2}\cos \pi t_1 \\ -\frac{1}{2}\cos \pi t_1 \\ -\frac{1}{2}\cos \pi t_1 \end{bmatrix}$$
note that $\chi(t_1) = \sum_{n=-\infty}^{\infty} \ln t_n$ $\int \ln w_{n}$
 $\int \ln t_n = \frac{1}{2} \ln t_n = nw_n = \infty$
 $D_1 = \frac{1}{2} \ln t_n = nw_n = 2 \cos \pi t_n$

C)
$$\chi(t)$$
 is periodic => $2t 2s = power signed$
Using parseval's theorem
 $P_{z} = \sum_{n=-\infty}^{\infty} |D_{n}|^{2} = (\frac{1}{2})^{2} + (\frac{1}{2})^{2}$

Question 3:

The system below , takes the input signal, low-pass filter it with cut off frequency of 0.7 Hz, then amplify it with a gain equals to π , then add a constant of 0.25, and finally multiply the resultant with a carrier of 10Hz

The input signal, m(t), is periodic and can be represented by its Fourier series expansion as:

a. Find the percentage of power at the output of the filter compared to the input power. Hint: you will need to find the power of *m*(*t*) and *x*(*t*) and compare them.

$$P_{g(t)} = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |g(t)|^2 dt$$
$$P_{m(t)} = \frac{1}{2} \int_{-1}^{1} t^2 dt = \frac{1}{2} \frac{1}{3} [(1) - (-1)] = \frac{1}{3}$$

After the low-pass filter only the first harmonic will pass, Note that $T_0=2 \rightarrow f_0=0.5$ Hz

The fist harmonic is given to be $x(t) = \frac{2}{\pi} \cos(\pi t - \frac{\pi}{2}) = \frac{2}{\pi} \sin(\pi t)$. Power of sinusoidal is $\frac{\left(\frac{2}{\pi}\right)^2}{2} = \frac{2}{\pi^2} = 0.2026$

Power ratio= $(0.2026)/(1/3)=0.6079\approx60.8$ %.. (5 points) Sketch the signal y(t) in time domain and its magnitude and phase spectra. (show all values in x-axis and y-axis) 2π 2π

(3 points , note that for the sin is 0 at t=0)

If you could not solve the above assume $y(t) = \cos(\pi)t$

b. Sketch *z*(*t*) and its magnitude spectrum. (show all important values on the sketch)

(4 points)

c. Notice that z(t) is the AM modulated signal for y(t), find the values of the modulation index and the power efficiency? Comment on the value of the efficiency.

$$u = \frac{m_p}{A} = \frac{2}{0.25} = 8$$

Power effeceincy = $\frac{\tilde{m}^2}{\tilde{m}^2 + A^2} = \frac{2^2/2}{\frac{2^2}{2} + (0.25)^2} = 0.977$, 97.7%. We can also use the other equation

because it is single tone

Power effeceincy
$$=$$
 $\frac{\mu^2}{\mu^2 + 2} = \frac{64}{64 + 2} = 0.977$

The value of the efficiency is very high and it is expected not to exceed 33.33 % for single tone if a non coherent detector is to be used. This system is over-modulated and cannot be recovered non coherently

d. Can y(t) be recovered from z(t) using a non-coherent detector? Why?

No, because the system is over-modulated. We did not add enough carrier. We still cannot distinguish the negative from the positive side for the message. (2 points)

e. Sketch a system that can recover y(t) from z(t). (specify all possible values for the filter)

(2 points)

Question 4:

For the system shown, let the signal $c(t) = \cos \omega_c t$ and let m(t) have the following spectrum:

- a) Find the time domain signal y(t) in terms of m(t) and sketch its amplitude spectrum. (6 marks)
- b) What must you do to y(t) to get DSBSC modulated signal out of it. (3 marks)
- c) Assume you used instead of m(t) the modulated signal m(t)c(t), find the time domain signal y(t) in terms of m(t). (5 marks)
- d) From your result in part c, can this system be used to demodulate DSBSC signal? If yes, how; if not, why. (6 marks)

a) sume we
$$\Rightarrow 2\pi\pi\beta$$

a) $y(t) = [m(t) + c(t)]^2$

$$= m^2(t) + c^2(t) + 2n(t)c(t)$$

$$= m^2(t) + \frac{1}{2} + \frac{1}{2}cos[2wcd]$$

$$t + m(t) + cos[2wcd] + \frac{1}{2} + \frac{1}{2}cos[2wcd]$$

$$t + m(t) + m(t) + cos[2wcd]$$

$$t + \frac{1}{2}cos[2wcd]$$

$$t + \frac{1}{2}cos[2wcd]$$

$$t + \frac{1}{2}cos[2wcd]$$

$$t + \frac{1}{2}cos[2wcd]$$

$$t + m(t) + m(t) + cos[2wcd]$$

$$t + \frac{1}{2}cos[2wcd]$$

$$t + \frac{1}{2}$$