KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

## ELECTRICAL ENGINEERING DEPARTMENT

SECOND SEMESTER 2010-2011 (102)

| Course Title: | Communication Engineering I |
| :--- | :--- |
| Course Number: | EE 370 |


| Exam Type: | MAJOR EXAM I |
| :--- | :--- |
| Date: | March 23, 2011 |
| Time: | $7: 00 \mathrm{pm}-8: 30 \mathrm{pm}(1 \& 1 / 2$ hours $)$ |

Student Name: $\qquad$ Key $\qquad$
Student ID: $\qquad$ 00000 $\qquad$

Section:

Serial Number:

|  | GRADING |  |  |
| :--- | :---: | :--- | :---: |
| Question 1 | 10 |  |  |
| Question 2 | 10 |  |  |
| Question 3 | 20 |  |  |
| Question 4 | 20 |  |  |
| Total: | 60 |  |  |

Be neat, organized, and show all your work and results.

## Question 1:

Mark the following clearly as true (T) or false (F).

| 1 | DSBSC has a power efficiency of about 67\% which makes it more <br> power efficient compared to AM signal having a power efficiency of <br> $33 \%$ at best. | ( F ) |
| :---: | :--- | :---: |
| 2 | AM signal can be demodulated coherently | ( T ) |
| 3 | When using switching modulators for DSBSC, it is necessary to use <br> double balanced modulators. | ( F ) |
| 4 | In compact trigonometric Fourier series, $\left(C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}\right)$ <br> is complex and it contains the amplitude and phase information of <br> the frequency spectra. | ( F ) |
| 5 | The amplitude spectrum of a real signal is even and the phase <br> spectrum is odd. | ( T ) |
| 6 | Both AM and DSBSC modulations need twice the bandwidth of the <br> modulating signal and a carrier frequency of at least twice the <br> bandwidth of the modulating signal. | ( F ) |
| 7 | Distortionless systems have constant amplitude spectrum and <br> exponential phase spectrum. | ( F ) |
| 8 | The time constant, RC, of the low-pass filter for the envelope <br> detector depends on the value of the modulation index. | ( T ) |
| 9 | In QAM demodulation, phase mismatch is less damaging than <br> frequency mismatch | ( T ) |
| 10 | Band-limited signals have infinite bandwidth. |  |

Question 2:
a) Find the complex (exponential) Fourier series of $x(t)=\cos (2000 \pi t)+\sin ^{2}(2000 \pi t)$. marks)
b) Plot the amplitude spectrum and phase spectrum (two sided) of the signal $x(t)$. (4 marks)
c) Show whether $x(t)$ is a power or energy signal and find its corresponding power or energy if possible. (2 marks)
a)

$$
\begin{aligned}
x(t) & =\cos (2000 \pi t)+\frac{1}{2}[1-\cos 4000 \pi t] \\
& =\frac{1}{2}+\cos (2000 \pi t)-\frac{1}{2} \cos 4000 \pi t \\
& =\frac{1}{2}+\frac{1}{2}\left[e^{j 200 \pi t}+e^{-j 2000 \pi t}\right]-\frac{1}{4}\left[e^{j 4000 \pi t}+e^{j 400 \pi \pi t}\right] \\
& =\frac{1}{2}+\frac{1}{2} e^{j 2000 \pi t}+\frac{1}{2} e^{-j 200 \pi t}-\frac{1}{4} e^{j 400 \pi t}-\frac{1}{4} e^{-j 24000 \pi t}
\end{aligned}
$$

note that


$$
\therefore D_{0}=\frac{1}{2} L \text { at } \omega=n \omega_{0}=0
$$

$$
D_{1}=\frac{1}{2} \text { bat } w=n \omega_{0}=2000 \pi
$$

$$
D_{1}=\frac{1}{2} \text { Lat } w=n w_{0}=-2000 \pi
$$



$$
\begin{array}{ll}
D_{-1}=\frac{1}{2} & \text { at } \\
D_{2}=\frac{-1}{4}=\frac{1}{4} L \omega_{0}=4000 \pi \\
D_{-2}=\frac{-1}{4}=\frac{1}{4} L \pi & \text { at } \\
\end{array}
$$

C) $x(t)$ is periodic $\Rightarrow 2 t$ is a power signal

Using parseval's the rem

$$
\begin{aligned}
& \text { Using parseval's the rem } \\
& \begin{aligned}
P_{x}=\sum_{n=-\infty}^{\infty}\left|D_{n}\right|^{2} & =\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2} \\
& =\frac{7}{8}=0.875 \text { watt }
\end{aligned}
\end{aligned}
$$

you can use also

$$
\begin{aligned}
P x=C_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty} c_{n}^{2} & =\left(\frac{1}{2}\right)^{2}+\frac{1}{2}(1)^{2}+\frac{1}{2}\left(\frac{1}{2}\right)^{2} \\
& =\frac{7}{8}=0.875 \text { watt }
\end{aligned}
$$

## Question 3:

The system below, takes the input signal, low-pass filter it with cut off frequency of 0.7 Hz , then amplify it with a gain equals to $\pi$, then add a constant of 0.25 , and finally multiply the resultant with a carrier of 10 Hz


The input signal, $m(t)$, is periodic and can be represented by its Fourier series expansion as:
$m(t)=\sum_{n=1}^{\infty} \frac{2}{n \pi} \cos \left(n \pi t+\theta_{n}\right)$, where $\theta_{n}= \begin{cases}-\frac{\pi}{2} & n \text { odd } \\ +\frac{\pi}{2} & n \text { even }\end{cases}$
a. Find the percentage of power at the output of the filter compared to the input power. Hint: you will need to find the power of $m(t)$ and $x(t)$ and compare them.

$$
\begin{gathered}
P_{g(t)}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}}|g(t)|^{2} d t \\
P_{m(t)}=\frac{1}{2} \int_{-1}^{1} t^{2} d t=\frac{1}{2} \frac{1}{3}[(1)-(-1)]=\frac{1}{3}
\end{gathered}
$$

After the low-pass filter only the first harmonic will pass, Note that $T_{0}=2 \rightarrow f_{0}=0.5 \mathrm{~Hz}$
The fist harmonic is given to be $x(t)=\frac{2}{\pi} \cos \left(\pi t-\frac{\pi}{2}\right)=\frac{2}{\pi} \sin (\pi t)$. Power of sinusoidal is $\frac{\left(\frac{2}{\pi}\right)^{2}}{2}=$ $\frac{2}{\pi^{2}}=0.2026$
Power ratio $=(0.2026) /(1 / 3)=0.6079 \approx 60.8 \%$.. ( 5 points) Sketch the signal $y(t)$ in time domain and its magnitude and phase spectra. (show all values in $x$-axis and $y$-axis)
$y(t)=2 \sin (\pi t)$



(3 points, note that for the $\sin$ is 0 at $t=0$ )

If you could not solve the above assume $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{\operatorname { c o s }}(\boldsymbol{\pi}) \boldsymbol{t}$
b. Sketch $z(t)$ and its magnitude spectrum. (show all important values on the sketch)

(4 points)
c. Notice that $z(t)$ is the AM modulated signal for $y(t)$, find the values of the modulation index and the power efficiency? Comment on the value of the efficiency.

$$
\mu=\frac{m_{p}}{A}=\frac{2}{0.25}=8
$$

Power effeceincy $=\frac{\widetilde{m}^{2}}{\widetilde{m}^{2}+A^{2}}=\frac{2^{2} / 2}{\frac{2^{2}}{2}+(0.25)^{2}}=0.977,97.7 \%$. We can also use the other equation because it is single tone

$$
\text { Power effeceincy }=\frac{\mu^{2}}{\mu^{2}+2}=\frac{64}{64+2}=0.977
$$

The value of the efficiency is very high and it is expected not to exceed $33.33 \%$ for single tone if a non coherent detector is to be used. This system is over-modulated and cannot be recovered non coherently ( 4 points)
d. Can $y(t)$ be recovered from $z(t)$ using a non-coherent detector? Why?

No, because the system is over-modulated. We did not add enough carrier. We still cannot distinguish the negative from the positive side for the message.
( 2 points)
e. Sketch a system that can recover $y(t)$ from $z(t)$. (specify all possible values for the filter) (2 points)

$2 \cos (2 \pi(10) t)$

## Question 4:

For the system shown, let the signal $C(t)=\cos \omega_{c} t$ and let $m(t)$ have the following spectrum:
$m(t) \Leftrightarrow$

a) Find the time domain signal $y(t)$ in terms of $m(t)$ and sketch its amplitude spectrum. (6 marks)
b) What must you do to $y(t)$ to get DSBSC modulated signal out of it. (3 marks)
c) Assume you used instead of $m(t)$ the modulated signal $m(t) c(t)$, find the time domain signal $y(t)$ in terms of $m(t)$. (5 marks)
d) From your result in part c, can this system be used to demodulate DSBSC signal? If yes, how; if not, why. (6 marks)

b) use a bandpass filter of centre frequency we \& $B W$ of $4 \pi B$.
C) $y(t)=[m(t) c(t)+c(t)]^{2}$
$=m^{2}(t) c^{2}(t)=c^{2}(t)+2 m(t) c^{2}(t)$
$=m^{2}(t)\left[\frac{1}{2}+\frac{\cos 2 \omega_{c} t}{2}\right]+\frac{1}{2}+\frac{\cos \left(2 \omega_{c} t\right)}{2}$
$+m(t)+m(t) \cos \left(2 \omega_{c} t\right)$
$=\frac{1}{2} m^{2}(t)+\frac{1}{2} m^{2}(t) \cos 2 w_{c} t+\frac{1}{2}$
$\left.+\frac{1}{2} \cos 2 \omega_{c} t+m(t)+m(t) \cos 2 \omega_{c} t\right)$
d) at the baseband we have

$$
\frac{1}{2} m^{2}(t)+\frac{1}{2}+m(t)
$$

So if we use LPF of $B W 2 \pi \beta$ we will get $\frac{1}{2}+m(t)+\frac{1}{2} m^{2}(t)$ we can get $m(t)$ it $m(1) \ll 1$ So, $\frac{m^{2}(1)}{2}$ is negligable \& using.

