Kir	ng Fahd U Electr EE370: Co	Jniversity of Petroleum & rical Engineering Departme mmunications Engineering Maior Exam I	Minerals nt I (071)
		October 28, 2007 7:00 PM-8:30PM Building 59-2001/2002	Please write your Serial #
	Name: ID# :	KEY	
Please circle your section	Section	 (3) Dr. Kousa, SMW 9:00-9:50 (2) Dr. Kousa, SMW 10:00-10: (1) Dr. Muqaibel, UT 8:30-9:45 (4) Dr. Muqaibel, UT 10:00-11 	0am 50am 5am :15am

Question	Mark
1	/10
2	/12
3	/12
4	/11
Total	/45

Instructions:

- 1. This is a closed-book/notes exam.
- 2. The duration of this exam is one and half hours.
- 3. Read the questions carefully. Plan which question to start with.
- 4. CLEARLY LABEL ALL SIGNIFICANT VALUES ON BOTH AXIES OF ANY SKETCH
- 5. Work on your own.
- 6. Mobile phones are not allowed in the exam room.
- 7. Tables of Fourier Transform pairs, FT properties and Trigonometric Identities are provided in the last sheet.

Problem 1: (10 points)

<u>Clearly</u> write True (T) or False (F).

a	The antenna dimension is inversely proportional to the transmitting frequency	Т
b	$x^2 \delta(x-1) \neq 1$	Т
c	For a distortionless system, the amplitude spectrum must be constant, and the phase must be a linear function of frequency.	Τ
d	For a modulating signal that is real, the SSB modulated signal is complex.	F
e	Envelope detection is a type of coherent demodulation.	F
f	AM (DSB with carrier) provides saving in the bandwidth at the cost of higher transmitted power.	F
g	The Hilbert transform of the Hilbert transform of a signal is the negative of the signal itself.	Т
h	To allow for non-coherent detection in AM (DSB with carrier) the modulation index should be greater than 1	F
i	The energy of a power signal is finite.	F
j	The bandwidth <i>efficiency</i> of Quadrature Amplitude Modulation (QAM) is the same as that of DSBSC modulation	F

Problem 3: Amplitude Modulation (12 points)

An AM (DSB with carrier) modulator operates with the message signal:

 $m(t) = 4\cos(2\pi 10t) + 6\cos(2\pi 30t)$

The un-modulated carrier is given by $\cos(2\pi 1000t)$

Hint: the maximum and minimum values of m(t) are 10, -10, respectively

(a) If the modulation index is set to 0.5,

(a)

M(w)

- (i) Write an expression for the modulated signal, $\varphi_{AM}(t)$.
 - (ii) Sketch the magnitude spectrum of the modulator output, $\varphi_{AM}(t)$, showing the values at all frequencies of interest.
 - (iii) Determine the modulator efficiency, η , defined by the ratio between the power of sidebands (message) and the total power.
- If envelope detection is going to be used for the detection of the above modulated signals, **(b)** design proper a value for the circuit time constant RC.

$$\mu = \frac{m_{p}}{A} = \frac{10}{A} = 0.5 \implies A = 20 \quad (1)$$
(a)
$$\varphi_{AM}(t) = \left[m(t) + A\right] \cos w_{t} t$$
(i)
$$= \left[4\cos(2\pi \log t) + 6\cos(2\pi 30t)w\right] \cos(2\pi \log t) \quad (2)$$

(ii)

$$\begin{array}{c}
(ii)\\
\begin{array}{c}
(ii)\\
\begin{array}{c}
(ii)\\
\begin{array}{c}
(ii)\\
\begin{array}{c}
(ii)\\
\begin{array}{c}
(iii)\\
\begin{array}{c}
(iiii)\\
\begin{array}{c}
(iiiii)\\
\begin{array}{c}
(iiiii)\\
\begin{array}{c}
(iiiii)\\
\begin{array}{c}
(iiii)\\
\begin{array}{c}
(iiiii)\\
\begin{array}{c}
(iiii)\\
\begin{array}{c}
(iiiii)\\
\begin{array}{c}
(iiiii)\\
\begin{array}{c}
(iiii)\\
(iiii)\\
\begin{array}{c}
(iiii)\\
(iiii$$

Problem 4: (11 points)

- 2 (a) The impulse response of a Hilbert transform is $1/(\pi t)$. Derive its transfer function $H(\omega)$.
 - (b) Consider the phase shift method of generating LSB-SSB waves.
- ⁴ (i) Sketch the block diagram of the system.
- (ii) Let the input to the system be the message $\cos(2\pi t)$, and let the carrier signal be $\cos(20\pi t)$. Trace the signal throughout the system mathematically and graphically in the TIME DOMAIN. (That is, <u>write</u> the expression and <u>sketch</u> the signal after each stage).

(a) application of duality property to pair 12 of Table 3.1 "shout table of Fourier Transform youlds. ∃Tt <>> - J segn(w)

211 1010

Short T	able of Fourier Transf	orms		
	g(t)	$G(\omega)$		Trigonometric Identities
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0	
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0	$\sum_{n=1}^{\infty} A_{n} = \sum_{n=1}^{\infty} \frac{1}{\left(\sum_{n=1}^{\infty} \left(A + \mathbf{D}\right) + \sum_{n=1}^{\infty} \left(A + \mathbf{D}\right)\right)}$
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0	$\cos A \cos B = \frac{1}{2} [\cos (A+B) + \cos (A-B)]$
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	a > 0	$\sin A \sin B = \frac{1}{2} [\cos (A-B) - \cos (A+B)]$
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0	$\sin A \cos B = \frac{1}{2} [\sin (A+B) + \sin (A-B)]$
6	$\delta(t)$	1		
7	1	$2\pi\delta(\omega)$		
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$		
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$		
10	$\sin \omega_0 t$	$j\pi [\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$		
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$		
12	sgn t	$\frac{2}{j\omega}$		
13	$\cos \omega_0 t \ u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{w_0^2-\omega}$	2	
14	$\sin \omega_0 t \ u(t)$	$\frac{\pi}{2j}\left[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)\right]+\frac{\omega_0}{\omega_0^2-\omega}$	2	
15	$e^{-at}\sin\omega_0 t \ u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0	
16	$e^{-at}\cos\omega_0 t \ u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0	
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	τ sinc $\left(\frac{\omega\tau}{2}\right)$		
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$		

Fourier Transform Operations

Operation	g(t)	$G(\omega)$
Addition	$g_1(t) + g_2(t)$	$G_1(\omega) + G_2(\omega)$
Scalar multiplication	kg(t)	$kG(\omega)$
Symmetry	G(t)	$2\pi g(-\omega)$
Scaling	g(at)	$\frac{1}{ a }G\left(\frac{\omega}{a}\right)$
Time shift	$g(t-t_0)$	$G(\omega)e^{-j\omega t_0}$
Frequency shift	$g(t)e^{j\omega_0 t}$	$G(\omega - \omega_0)$
Time convolution	$g_1(t) * g_2(t)$	$G_1(\omega)G_2(\omega)$
Frequency convolution	$g_1(t)g_2(t)$	$\frac{1}{2\pi}G_1(\omega)*G_2(\omega)$
Time differentiation	$\frac{d^n g}{dt^n}$	$(j\omega)^n G(\omega)$
Time integration	$\int_{-\infty}^t g(x) dx$	$\frac{G(\omega)}{j\omega} + \pi G(0)\delta(\omega)$