EE 315

EXAM I

DATE: Saturday 22/10/2011

TIME: 6:00 PM-7:30 PM

ID\#	
Name	KEY
Section\#	

	Maximum Score	Score
Q1	20	
Q2	20	
Q3	20	
Q4	20	
TOTAL	80	

Problem \#1 (20)

Let X be a random variable with a cumulative distribution function as shown below

(a) What is the sample space of X ? (2.5)
(b) Write a mathematical expression for the cumulative distribution function $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$?
(c) Find and plot the probability density function $\mathrm{f}_{\mathrm{X}}(\mathrm{x})$?
(d) Find the probability $\mathrm{P}(1<\mathrm{X} \leq 3)$?
(e) Find the expected value $\mathrm{E}[\mathrm{X}]$?

Solution

(a) $\mathrm{S}_{\mathrm{X}}=\{-1,0,1,2,3\}$
(b) $\mathrm{P}(\mathrm{X}=-1)=0.1 \quad \mathrm{P}(\mathrm{X}=0)=0.4-0.1=0.3 \quad \mathrm{P}(\mathrm{X}=1)=0.6-0.2=0.2$

$$
\begin{aligned}
& P(X=2)=0.75-0.6=0.15 \quad P(X=3)=1-0.75=0.25 \\
& \Rightarrow F_{X}(x)=0.1 u(x+1)+0.3 u(x)+0.2 u(x-1)+0.15 u(x-2)+0.25 u(x-3)
\end{aligned}
$$

(c) $\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\frac{\mathrm{dF}_{f}(\mathrm{x})}{\mathrm{dx}} \underset{\mathrm{dx}}{ } \neq \theta .0 .3 \delta(\mathrm{x})+0.2 \delta$ $\left.\left(\begin{array}{ll}x-1\end{array}\right)+0.18 \mathrm{x} \quad \mathrm{z}.\right)+0.25 \delta\left(\begin{array}{ll}\mathrm{x} & 3\end{array}\right)$

(d) $\mathrm{P}(1<\mathrm{X} \leq 3)=\mathrm{F}_{\mathrm{X}}(3)-\mathrm{F}_{\mathrm{X}}(1)=1-0.6=0.4$

OR

$$
\begin{aligned}
\mathrm{P}(1 & <\mathrm{X} \leq 3)=\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=2)=0.25+0.15=0.4 \\
\mathrm{E}[\mathrm{X}] & =\sum \mathrm{x}_{\mathrm{i}} P\left(X=\mathrm{x}_{\mathrm{i}}\right) \\
& =(-1)(0.1)+(0)(0.3)+(1)(0.2)+(2)(0.15)+(3)(0.25)=1.15
\end{aligned}
$$

Problem \#2 (20)

Assume that capacitors made by a manufacturer have a probability of 0.4 of being defective when new. A radio engineer purchases five capacitors for building an electronic circuit.
(a) Plot the probability density function for a random variable "the number of defective capacitors."
(b) What is the probability that exactly one capacitor is defective of the five? (2)
(c) What is the probability that all five capacitors are functional?
(d) Determine the probability that one or more capacitors are defective?

Solution
(a) $\mathrm{P}(\mathrm{X}=0)=\binom{5}{0}(0.4)^{0}(0.6)^{5}=0.0778$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=1)=\binom{5}{1}(0.4)^{1}(0.6)^{4}=0.2592 \\
& \mathrm{P}(\mathrm{X}=2)=\binom{5}{2}(0.4)^{2}(0.6)^{3}=0.3456 \\
& \mathrm{P}(\mathrm{X}=3)=\binom{5}{3}(0.4)^{3}(0.6)^{2}=0.2304 \\
& \mathrm{P}(\mathrm{X}=4)=\binom{5}{4}(0.4)^{4}(0.6)^{1}=0.0768 \\
& \mathrm{P}(\mathrm{X}=5)=\binom{5}{5}(0.4)^{5}(0.6)^{0}=0.0102
\end{aligned}
$$

(b) $\mathrm{P}(\mathrm{X}=1)=0.2592$
(c) $\mathrm{P}(\mathrm{X}=0)=0.0778$
(d) $\mathrm{P}(\mathrm{X} \geq 1)=1-\mathrm{P}(\mathrm{X}=0)=1-0.0778=0.9222$

OR $\mathrm{P}(\mathrm{X} \geq 1)=\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4)+\mathrm{P}(\mathrm{X}=5)$

$$
=0.2592+0.3456+0.2304+0.0768+0.0102=0.9222
$$

Problem \#3 (20)

A box contains numbered balls with equal probability of selecting any ball. If the sample space is

$$
S=\{0,1,2,3,4,5,6,7,8,9,10,11\}
$$

Let the events A, B and C as follows:
$A=\{0,1,2,3,4\}$
$B=\{3,4,5,6,7\}$
$C=\{3,4,5,6,7,8\}$
(a) Find the probability $\mathrm{P}(\mathrm{A} \mathrm{UB})$?
(b) Find the probability $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$?
(c) Are the events A and B independent, explain?
(d) Are the events A and C independent, explain ?

Solution

(a) $\mathrm{P}(\mathrm{A} U \mathrm{~B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \mathrm{B})=\frac{5}{12}+\frac{5}{12}-\frac{2}{12}=\frac{8}{12}=\frac{2}{3}$
(b) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\frac{2}{12}}{\frac{5}{12}}=\frac{2}{5}$
(c) A and B are not independent, since $P(A \mid B)=\frac{2}{5} \neq P(A)=\frac{5}{12}$
(d) A and C are not independent, since $\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\frac{\mathrm{P}(\mathrm{A} \mathrm{C)}}{\mathrm{P}(\mathrm{C})}=\frac{\frac{2}{\frac{1}{6}}}{\frac{6}{12}}=\frac{1}{3} \neq \mathrm{P}(\mathrm{A})=\frac{5}{12}$

Problem \#4 (20)

A random variable X has a propbabilty density function (pdf) defined by:

$$
f_{X}(x)= \begin{cases}c\left(1-x^{4}\right), & -1 \leq x \leq 1 \tag{4}\\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find c such that $f_{X}(x)$ is a valid pdf ?
(b) Find $F_{X}(x)$ and sketch it ?
(c) Find $P\left[|X|<\frac{1}{2}\right]$?
(d) Find $P[X>0.5 \mid 0<X<1]$?

Solution

(a) $\int_{-\infty}^{\infty} f_{x}(x) d x=1=\int_{-\infty}^{\infty} c\left(1-x^{4}\right) d x=c \int_{-1}^{1}\left(1-x^{4}\right) d x$
$\Rightarrow \mathrm{c}=\frac{1}{\int_{-1}^{1}\left(1-\mathrm{x}^{4}\right) \mathrm{dx}}=\frac{1}{\left[1-\frac{\mathrm{x}^{5}}{5}\right]_{-1}^{1}}=\frac{1}{\frac{8}{5}}=\frac{5}{8}$
(b) $\mathrm{F}_{\mathrm{x}}(\mathrm{x})=0 \quad \mathrm{X}<-1$

$$
F_{x}(x)=\int_{-1}^{x} f d d q=\quad \sum_{8}^{5} \int_{-1}^{x}\left(-d \varepsilon^{4}\right)=x \frac{5}{8} \quad x-\frac{1}{8}{ }^{5} \quad \frac{1}{2}
$$

(c) $\mathrm{P}\left(|\mathrm{X}|<\frac{1}{2}\right)=\mathrm{P}\left(-\frac{1}{2}<\mathrm{X}<\frac{1}{2}\right)=\frac{5}{8} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(1-\mathrm{x}^{4}\right) \mathrm{dx}=\frac{79}{128}=0.6172$
(d) $\mathrm{P}(\mathrm{X}>0.5 \mid 0<\mathrm{X}<1)=\frac{\mathrm{P}(\mathrm{X}>0.5 \cap 0<\mathrm{X}<1)}{\mathrm{P}(0<\mathrm{X}<1)}=\frac{\mathrm{P}(0.5<\mathrm{X}<1)}{\mathrm{P}(0<\mathrm{X}<1)}$

$$
=\frac{\frac{5}{8} \int_{\frac{1}{2}}^{1}\left(1-x^{4}\right) d x}{\frac{5}{8} \int_{0}^{1}\left(1-x^{4}\right) d x}=\frac{\frac{49}{256}}{\frac{1}{2}}=\frac{49}{128}
$$

