KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE 315

MAJOR 2

DATE: May 11, 2011

TIME: 7:00 PM-9:00 PM

SER\#	
ID\#	
Name	
Section\#	

	Maximum	Score
Problem 1	9	
Problem 2	10	
Problem 3	13	
Problem 4	8	
	40	
TOTAL	40	

Problem 1:

Let X and Y have a joint pdf:

$$
f_{X, Y}(x, y)=k . e^{-x-y} \quad \text { for } x \geq 0, y \geq 2 x
$$

a. Find the constant k that makes $f_{X, Y}(x, y)$ a valid joint pdf.
b. Find the marginal pdfs $f_{X}(x)$ and $f_{Y}(y)$
c. Show whether X and Y are independent random variables or not?

Problem 2:

Two random variables X and Y have a joint pdf given by:

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{4}(2 x+y), & 0 \leq x \leq 1, \quad 0 \leq y \leq 2 \\ 0, & \text { elsewhere }\end{cases}
$$

a) Find the joint CDF $F_{X, Y}(x, y)$ of X and Y over all $-\infty<x<\infty, \quad-\infty<y<\infty$.
b) Find the conditional pdf $f_{X}(x \mid Y=1)$.
c) Find the probability $P\{2 X \leq Y\}$.

Problem 3:

The following information is known about two jointly Gaussian random variables X and Y :

$$
E[X]=0, \quad E[Y]=-1, \quad E\left[X^{2}\right]=4, \quad E\left[Y^{2}\right]=9, \text { and } R_{X Y}=-4
$$

Two new random variables W and U are defined as

$$
\begin{aligned}
& W=3 X+Y \\
& U=-X-2 Y
\end{aligned}
$$

a) Find $E[W], E[U], E\left[W^{2}\right]$, and $E\left[U^{2}\right]$.
b) Find the variances $\sigma_{X}^{2}, \sigma_{Y}^{2}, \sigma_{U}^{2}$ and σ_{W}^{2}
c) Find the correlation $R_{W U}$
d) Are W and U uncorrelated? Justify your answer.
e) Determine the joint pdf of W and U .

Problem 4:

A random variable X with the following probability density function:

$$
f_{X}(x)= \begin{cases}2 e^{-2 x}, & x \geq 0 \\ 0, & \text { elsewhere }\end{cases}
$$

is transformed to a new random variable $Y=(X-3)^{2}-1$.
Find the probability density function of Y
Plot the pdf $f_{Y}(y)$

