http://faculty.kfupm.edu.sa/ee/muqaibel/

The z-transform Part 2

Dr. Ali Hussein Muqaibel

Dr.Ali Muqaibel

The material to be covered in this lecture is as follows:

- Properties of the z-transform
- Linearity
- Initial and final value theorems
- Time-delay
- z-transform table
- Inverse z-transform
- Application of z-transform to discrete-time systems

After finishing this lecture you should be able to:

- Find the z-transform for a given signal utilizing the ztransform tables
- Utilize the z-transform properties like the initial and final value theorems
- Find the inverse z-transform.
- Utilize z-transform to perform convolution for discretetime systems.

Derivation of the z-Transform

- The z-transform is defined as follows: $X(z)=\sum_{n=-\infty}^{+\infty} x[n] z^{-n}$
- The coefficient denote the sample value and denotes that the sample occurs n sample periods after the $t=0$ reference.
- Rather than starting form the given definition for the ztransform, we may build a table for the popular signals and another table for the z-transform properties.
- Like the Fourier and Laplace transform, we have two options either to start from the definition or we may utilize the tables to find the proper transform.
- The next slide illustrates a few z-transform pairs.
- Then we will investigate some of the z-transform properties:
- Linearity
, Time-shifting property
- Initial and final value theorems

Table of z-transform pairs

$f[n]$
$\delta(t)$
$\delta(t-k \Delta T)$
$u(t)$
t
t^{2}
$e^{-a t}$
$t e^{-a t}$
$a^{n} u[n]$

$F(z)$
1
z^{-k}
$\frac{z}{z-1}$
$\frac{\Delta T z}{(z-1)^{2}}$
$\frac{\Delta T^{2} z(z+1)}{(z-1)^{3}}$
$\frac{z}{z-e^{-a \Delta T}}$
$\frac{\Delta T z e^{-a \Delta T}}{\left(z-e^{-a \Delta T}\right)^{2}}$
$\frac{z}{z-a}$

$f[n], n \geqq 0$	$F(z)$	ROC
1. $\delta[n]$	1	All z
2. $\delta\left[n-n_{0}\right]$	$z^{-n_{0}}$	$z \neq 0$
3. $u[n]$	$\frac{z}{z-1}$	$\|z\|>1$
4.n	$\frac{z}{(z-1)^{2}}$	$\|z\|>1$
5. n^{2}	$\frac{z(z+1)}{(z-1)^{3}}$	$\|z\|>1$
6. $a^{\prime \prime}$	$\frac{z}{z-a}$	$\|z\|>\|a\|$
7. $n a^{n}$	$\frac{a z}{(z-a)^{2}}$	$\|z\|>\|a\|$
8. $n^{2} a^{n}$	$\frac{a z(z+a)}{(z-a)^{3}}$	$\|z\|>\|a\|$
9. $\sin b n$	$\frac{z \sin b}{z^{2}-2 z \cos b+1}$	$\|z\|>1$
10. $\cos b n$	$\frac{z(z-\cos b)}{z^{2}-2 z \cos b+1}$	$\|z\|>1$
11. $a^{\prime \prime}$ sin $b n$	$\frac{a z \sin b}{z^{2}-2 a z \cos b+a^{2}}$	$\|z\|>\|a\|$
12. $a^{\prime \prime} \cos b n$	$\frac{z(z-a \cos b)}{z^{2}-2 a z \cos b+a^{2}}$	$\|z\|>\|a\|$

Linearity of the z-Transform

- If $x_{1}[n] \stackrel{Z}{\leftrightarrow} X_{1}(z)$ with region of convergence, $R O C=R_{1}$.
- And $x_{2}[n] \stackrel{\leftrightarrow}{\leftrightarrow} X_{2}(z)$ with region of convergence, $R O C=R_{2}$.
- Then If $a_{1} x_{1}[n]+a_{2} x_{2}[n] \leftrightarrow a_{1} X_{1}(z)+a_{2} X_{2}(z)$
- with $R O C=R_{1} \cap R_{2}$
- This follows directly from the definition of the z-transform because the summation operator is linear.
- It is easily extended to a linear combination of an arbitrary number of signals.
- This property includes the multiplication by constant property which states that if the signal is scaled by a constant its z-transform will be scaled by the same constant.
- $a_{1} x_{1}[n] \stackrel{z}{\leftrightarrow} a_{1} X_{1}(z)$

Time-Shifting property for the z-Transform

- If $x[n] \stackrel{z}{\leftrightarrow} X(z)$ with $R O C=R$
- Then $x\left[n-n_{0}\right] \stackrel{z}{\leftrightarrow} z^{-n_{0}} X(z)$ with ROC $=R$
- Proof

$$
\begin{aligned}
Z\{x[n-1]\} & =\sum_{n=-\infty}^{\infty} x[n-1] z^{-n} \\
& =z^{-1} \sum_{n=-\infty}^{\infty} x[n-1] z^{-(n-1)} \\
& =z^{-1} \sum_{m=-\infty}^{\infty} x[m] z^{-m}=z^{-1} Z\{x[n]\}
\end{aligned}
$$

- This property will be very important for producing the $\mathbf{z -}$ transform transfer function of a difference equation which uses the property:

$$
x[n-1] \stackrel{z}{\leftrightarrow} z^{-1} X(z)
$$

Example 1: Properties of the z-transform

- Find the z-transform for the input signal

$$
x[n]=7(1 / 3)^{n-2} u[n-2]-6(1 / 2)^{n-1} u[n-1]
$$

- Solution:
- We know that $a^{n} u[n] \stackrel{z}{\leftrightarrow} \frac{z}{z-a}$
- So

$$
\begin{aligned}
X(z) & =7 z^{-2} \frac{z}{z-1 / 3}-6 z^{-1} \frac{z}{z-1 / 2} \\
& =7 \frac{1}{z^{2}-1 / 3 z}-6 \frac{1}{z-1 / 2}
\end{aligned}
$$

Initial and Final Value Theorems

- If $x[n]$ has a z-transform $X(z)$ and if $\lim X(z)$ as $z \rightarrow \infty$ exists, then

$$
\lim _{n \rightarrow 0} x[n]=x[0]=\lim _{z \rightarrow \infty} X(z)
$$

- This theorem can be easily proven by the definition of the ztransform
- As we take the limit all terms will be zero except the first term

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}=x[0]+x[1] z^{-1}+x[2] z^{-2}+\ldots
$$

- The final value theorem which is given by

$$
\lim _{n \rightarrow \infty} x[n]=\lim _{z \rightarrow 1}\left(\left(1-z^{-1}\right) X(z)\right)
$$

Example 2: Application of the initial and final value theorems

- Find the initial and final values for the following signal expressed in its z-transform
- Solution:

$$
F(z)=\frac{0.792 z^{2}}{(z-1)\left(z^{2}-0.416 z+0.208\right)}
$$

- Initial-value
- Final -value

$$
\begin{aligned}
& F(z \rightarrow \infty)=\frac{0.792 z^{2}}{z^{3}}=0 \\
& f(n \rightarrow \infty)=\frac{0.792}{(1-0.416+0.208)}=1
\end{aligned}
$$

- These answers can be justified by looking at the expansion of the given expression

$$
F(z)=0.792 z^{-1}+1.12 z^{-2}+1.091 z^{-3}+1.01 z^{-4}+0.983 z^{-5}+0.989 z^{-6}+0.99 z^{-7} \ldots .
$$

- The coefficient for is zero which is the initial value.
- The coefficient converges to one as the negative power of z increases which corresponds to the final value.

Tables of z-transform properties

Name	Property
I. Lincarity, (11.8)	$\mathscr{S}\left[a_{1} f_{1}[n]+a_{2} f_{2}[n]\right]=a_{1} F_{1}(z)+a_{2} F_{2}(z)$
\therefore Real shifting, (11.13)	Q $\left[f\left[n-n_{0}\right] u\left[n-n_{0}\right]\right]=z^{-n_{0}} F(z), \quad n_{0} \geqq 0$
3. Real shifting, (11.25)	$\mathscr{P}\left[f\left[n+n_{0}\right] u[n]\right]=z^{n_{0}}\left[F(z)-\sum_{n=0}^{n_{0}-1} f[n] z^{-n}\right]$
4. Complex shilting, (11.23)	$\mathscr{F}\left[a^{\prime \prime} f[n]\right]=F(z / a)$
5. Multiplication by n	$\mathscr{T}[n f[n]]=-z \frac{d F(z)}{d z}$
6. Time scaling, (11.33)	$\mathscr{L}[f[n / k]]=F\left(z^{k}\right), k$ a positive integer
7. Convolution, (11.38)	$\mathscr{T}[x[n] * y[n]]=X(z) Y(z)$
8. Summation	$\mathscr{P}\left[\sum_{k=0}^{n} f[k]\right]=\frac{z}{z-1} F(z)$
9. Initial value, (11.27)	$f[0]=\lim _{z \rightarrow \infty} F(z)$
10. Final value, (11.30)	$f[\infty]=\lim _{z \rightarrow 1}(z-1) F(z)$, if $f[\infty]$ exists

Inverse z-Transform

Find the inverse ztransform for $\frac{z}{z-1}$ by long division.

- The inverse operation for the z-transform my be accomplished by:
- Long division
- Partial fraction expansion
- The z-transform of a sample sequence can be written as

$$
X(z)=x(0)+x(T) z^{-1}+x(2 T) z^{-2}+\ldots
$$

- If we can write $X(z)$ into this form, the sample values can be determined by inspection.
- When $X(z)$ is represented in a ratio of polynomials in z, this can be easily achieved by long division.
- Before carrying out the division, it is convenient to arrange both the numerator and the denominator in ascending powers of z^{-1}.

Inverse z-transform using Partial Fraction Expansion

- Alternatively, we may avoid the long division by partial fraction expansion. The idea is similar to the method used for inverse Laplace transform.
- The objective is to manipulate $X(z)$ into a form that can be inverse z-transformed by using z-transform tables.
- Because of the forms of transforms,
- it is usually best to perform partial fraction expansion of $H(z) / z$.
- As an alternative z^{-1} can be treated as the variable in the partial fraction expansion.
- Important: before doing partial-fraction expansion, make sure the z-transform is in proper rational function of !

Example 3: Inverse z-Transform Using
 Partial Fraction Expansion

- Find the inverse z-transform using both partial fraction expansion and long division $X(z)=\frac{z^{2}}{(z-1)(z-0.2)}$
- Solution:
- If we treat z^{-1} as the variable in the partial fraction expansion, we can write
, $X(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-0.2 z^{-1}\right)}=\frac{A}{1-z^{-1}}+\frac{B}{1-0.2 z^{-1}}$
- Utilizing Heaviside's Expansion Method:
- $A=\left(1-z^{-1}\right) X(z)=\frac{1}{1-0.2 z^{-1}}=\frac{1}{0.8}=1.25$
, $B=\left(1-0.2 z^{-1}\right) X(z)=\frac{1}{1-z^{-1}}=-0.25$

$$
1-0.2 z^{-1}=0 \quad(z=0.2)
$$

Continue Solution of Example 3:

$$
X(z)=\frac{1.25}{1-z^{-1}}+\frac{-0.25}{1-0.2 z^{-1}} \Rightarrow x(n T)=\left(1.25-0.25(0.2)^{n}\right) u[n]
$$

- From which we may find that $x(0)=1, x(T)=1.2, x(2 T)=1.24, x(3 T)$ $=1.248$
- We may get to the same answer using long division. $X(z)$ is written as
- $X(z)=\frac{z^{2}}{z^{2}-1.2 z+0.2}$
- which is, after multiplying numerator and denominator by z^{-2}
, $X(z)=\frac{1}{1-1.2 z^{-1}+0.2 z^{-2}}$
- Now, it is left for you to show that the long division will result in the same answer given by
b $X(z)=1+1.2 z^{-1}+1.24 z^{-2}+1.248 z^{-3}+\cdots$

Difference Equation

- For continuous-time systems, differential equation may be solved using Laplace transform
- Similarly discrete-time systems result in Difference Equations which may be solved using z-transform
- Recall that discrete-time systems process a discrete-time input signal to produce a discrete-time output signal.
- The general symbolic notation for Discrete-Time System:
- $y(n T)=H[x(n T)]$

Transfer Function in the z-Domain

- There is a simple relationship for a signal time-shift
, $x[n-1] \stackrel{z}{\leftrightarrow} \mathrm{z}^{-1} \mathrm{X}(\mathrm{z})$
- This is fundamental for deriving the transfer function of a difference equation which is expressed in terms of the inputoutput signal delays
- The transfer function of a discrete time LTI system is the z transform of the system's impulse response
- The transfer function is a rational polynomial in the complex number z.
- Convolution is expressed as multiplication

$$
x[n] * h[n] \stackrel{z}{\leftrightarrow} X(z) H(z)
$$

- and this can be solved for particular signals and systems

Example 4: Discrete-Time Convolution

- Calculate the output of a first order difference equation of a input signal $x[n]=$ $0.5^{n} u[n]$
- System transfer function (z-transform of the impulse response)
- $y[n]-0.8 y[n-1]=x[n]$
- Taking the z-transform of the input signal
> $0.5^{n} u[n] \stackrel{z}{\leftrightarrow} X(z)=\frac{z}{z-0.5}$
- Taking the z-transform of the difference equation
, $Y(z)-0.8 z^{-1} Y(z)=X(z)$
, $Y(z)\left(1-0.8 z^{-1}\right)=X(z)$
, $H(z)=\frac{1}{1-0.8 z^{-1}}=\frac{z}{z-0.8}$
- The (z-transform of the) output is therefore the product:
- ROC $|z|>0.8$

$$
\begin{aligned}
Y(z) & =\frac{z^{2}}{(z-0.5)(z-0.8)} \\
& =\frac{1}{0.3}\left(\frac{0.8 z}{(z-0.5)}-\frac{0.5 z}{(z-0.8)}\right) \\
y[n] & =\left(0.8^{*} 0.5^{n} u[n]-0.5^{*} 0.8^{n} u[n]\right) / 0.3
\end{aligned}
$$

Self Test

- Question I:

, If $Z(x(n T))=\frac{1}{1+0.5 z^{-1}}$, what's $Z(x(n T-2 T))$?
, Answer: $\frac{z^{-2}}{1+0.5 z^{-1}}$

- Question 2:
, Find the z-transform for $Y(z)=\frac{1}{z^{2}-1.2 z+0.2}$
- Answer:
- $y(n T)=5 \delta[n]+\left(1.25-6.25(0.2)^{n}\right) u[n]$
- If we compare with Example 3 we conclude that the answer should be
- $y(n T)=\left(1.25-0.25(0.2)^{n-2}\right) u[n-2]$
b Which is the same .Try for $n=0,1,2,3, .$. The values are $0,0,1,1.2, \ldots$
- Question 3:
- Find $x(n T) * h(n T)$

$$
\begin{aligned}
& h(n T)=\left(\frac{1}{3}\right)^{n} u(n-5)=\left(\frac{1}{3}\right)^{5}\left(\frac{1}{3}\right)^{n-5} u(n-5) \\
& x(n T)=\left(\frac{1}{4}\right)^{n} u(n-3)=\left(\frac{1}{4}\right)^{3}\left(\frac{1}{4}\right)^{n-3} u(n-3)
\end{aligned}
$$

Answer :
$\left.x(n T) * h(n T)=\left(\frac{1}{4}\right)^{3}\left(\frac{1}{3}\right)^{5}\left[4\left(\frac{1}{3}\right)^{n-8}-3\left(\frac{1}{4}\right)^{n-8}\right)\right] u(n-8)$

Continue Self Test

- Question 4 :

- Calculate the step response to the system describe by the following difference equation
- $6 y[n]-5 y[n-1]+1 y[n-2]=x[n]$
- Answer

$$
\begin{array}{rlr}
H(z) & =\frac{1}{6-5 z^{-1}+1 z^{-2}}=\frac{1}{\left(2-z^{-1}\right)\left(3-z^{-1}\right)} & u[n] \stackrel{z}{\leftrightarrow} X(z)=\frac{1}{1-z^{-1}} \\
Y(z) & =\frac{1}{\left(3-z^{-1}\right)\left(2-z^{-1}\right)\left(1-z^{-1}\right)} & \\
& =0.5 \frac{1}{\left(3-z^{-1}\right)}-\frac{1}{\left(2-z^{-1}\right)}+0.5 \frac{1}{\left(1-z^{-1}\right)} & \\
& =0.167 \frac{1}{\left(1-1 / 3 z^{-1}\right)}-0.5 \frac{1}{\left(1-1 / 2 z^{-1}\right)}+0.5 \frac{1}{\left(1-z^{-1}\right)} & \\
y[n] & =\left(0.167(1 / 3)^{n}-0.5(1 / 2)^{n}+0.5\right) u[n] &
\end{array}
$$

Continue Self Test

- Q5: Perform the following

Convolution using z-transform and sketch the final answer

- $X(z)=2+1.5 z^{-1}+z^{-2}+0.5 z^{-3}$
- $H(z)=1+z^{-1}-z^{-2}-z^{-3}$
- $Y(z)=2+3.5 z^{-1}+0.5 z^{-2}-2 z^{-3}-$
$2 z^{-4}-1.5 z^{-5}-0.5 z^{-6}$

