http://faculty.kfupm.edu.sa/ee/muqaibel/

The z-transform Part 1

Dr. Ali Hussein Muqaibel

Dr.Ali Muqaibel

The material to be covered in this lecture is

 as follows:- Introduction to the z-transform
- Definition of the z-transform
- Derivation of the z-transform
- Region of convergence for the transform
- Examples.

After finishing this lecture you should be able to:

- Find the z-transform for a given signal utilizing the ztransform definition
- Calculate the region of convergence for the transform

Derivation of the z-Transform

- The z-transform is the basic tool for the analysis and synthesis of discrete-time systems.
- The z-transform is defined as follows:

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n T) z^{-n}
$$

- The coefficient $x\left(n T_{s}\right)$ denote the sample value and z^{-n} denotes that the sample occurs n sample periods after the $t=0$ reference.
- Note that the lower limit of the summation can start from zero if the signal is causal (Unilateral z-transform)
- Rather than starting form the given definition for the ztransform, we may start from the continuous-time function and derive the z-transform. This is done in the next slide.

Derivation of the z-transform

- The sampled signal may be written as $x_{s}(t)=\sum_{n=-\infty}^{\infty} x(t) \delta(t-n T)$
- Since $\delta\left(t-n T_{s}\right)=0$ for all t except at $t=n T_{s}, \quad x(t)$ can be replaced by $x\left(n T_{s}\right)$.
- And Assuming $x(t)=0$ for $t<0$. Then,

$$
x_{s}(t)=\sum_{n=0}^{\infty} x\left(n T_{s}\right) \delta\left(t-n T_{s}\right)
$$

- Taking Laplace transform yields
- Rearranging

$$
\begin{aligned}
& X_{s}(s)=\int_{0}^{\infty} \sum_{n=0}^{\infty} x(n t) \delta(t-n T) e^{-s t} d t \\
& X_{s}(s)=\sum_{n=0}^{\infty} x(n T) \int_{0}^{\infty} \delta(t-n T) e^{-s t} d t \\
& X_{S}(s)=\sum_{n=0}^{\infty} x(n T) e^{-s n T}
\end{aligned}
$$

- By sifting property of the delta function

Continue Derivation...

- Defining the complex variable z as the Laplace time-shift operator $z=e^{s T}$
- $X(s)=\sum_{n=0}^{\infty} x(n T) e^{-s n T}$ becomes, $X(z)=\sum_{n=0}^{\infty} x(n T) Z^{-n}$
- We could have started from the last expression but it is good to relate to the s-domain
- In the s-domain the left-half plane corresponds to $\sigma<0$ is mapped to $|z|<1$ in the z-plane which is the region inside the unit circle.

Region of Convergence (ROC)

- $z=e^{s T}$
- $s=\sigma+j \omega$
- $z=e^{\sigma T} e^{j \omega T}$
- $|z|=e^{\sigma T}$

- $|z|$ is converged for $\sigma<0$ (left-half of s-plane). This corresponds to $|z|<1$. This is the region inside the unit circle.
- $|z|$ is NOT converged for $\sigma>0$ (right-half of s-plane). This corresponds to $|z|>1$ which is the region outside the unit circle
- The mapping of the Laplace variable s into the z-plane through $z=e^{s T}$ is illustrated in the figure.

The Z-Transform in Summary

$$
\begin{aligned}
& X(z)=\sum_{n=0}^{\infty} x(n T) z^{-n}=\sum_{n=0}^{\infty} x[n] z^{-n} \\
& \text { Where } z=e^{s T} \text { and } n>=0
\end{aligned}
$$

- The coefficient $x(n T)$ denotes the sampled value
- The square bracket is used to indicate discrete times.
- z^{-n} denotes that the sample occurs n sample periods after the $t=0$ reference.
b $e^{s T}$ is simply the T-second time shift
- The parameter z is simply shorthand notation for the Laplace time shift operator
- For instance, $30 z^{-40}$ denotes a sample, having value 30 , which occurs 40 sample periods after the $\mathrm{t}=0$ reference
- Matlab has special tools for z-transform: ztrans, iztrans , pretty

Example 1:

- Determine the z-transform for the following signal

$$
x[n]= \begin{cases}1, & n=-1 \\ 2, & n=0 \\ -1, & n=1 \\ 1, & n=2 \\ 0, & \text { otherwise }\end{cases}
$$

- Solution:
- We know that

$$
\mathrm{X}(\mathrm{z})=\sum_{n=-\infty}^{\infty} x[n] \mathrm{z}^{-n}
$$

- hence

$$
\begin{gathered}
\mathrm{X}(\mathrm{z})=\sum_{-1}^{2} x[n] z^{-n}=x[-1] z^{-(-1)}+x[0] z^{-(0)}+x[1] z^{-(1)}+x[2] z^{-(2)} \\
X(z)=z+2-z^{-1}+z^{-2}
\end{gathered}
$$

Example 2: Sampled Step Function (Important Functions)

- Consider a unit step sample sequence defined by $x[n]=1, n \geq 0$
- Find the z-transform.

- Solution

$$
U(z)=X(z)=1+z^{-1}+z^{-2}+z^{-3}+\ldots \ldots \ldots . .=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-z^{-1}}, \quad|z|>1
$$

- The sum converges absolutely to
$\frac{1}{1-z^{-1}}$ outside the unit circle $|z|>1 \quad X(z)=\sum_{n=0}^{\infty} z^{-n}$

Sampled Dirac Delta Function (an other

 important function)- The Dirac Delta Function is defined to be
- For a delayed version of delta is defined as

$$
\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

- Applying the definition of the z-transform $\delta[n-k]= \begin{cases}1 & n=k \\ 0 & n \neq k\end{cases}$

Dirac

function

$$
X(z)=\sum_{k=0}^{\infty} \delta(t) z^{-s \Delta T}=\delta(0)=1
$$

$$
X(z)=1
$$

The Unit Exponential Sequence

- The unit exponential sequence is defined to be

$$
x[k]=\left\{\begin{array}{cc}
e^{-\alpha k} & k, \alpha>0 \\
0 & k<0
\end{array}\right.
$$

- Apply z-transform definition $X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$,

$$
\begin{aligned}
& \text { we get } \\
& X(z)=\sum_{k=0}^{\infty} e^{-\alpha k} z^{-k}=\sum_{k=0}^{\infty}\left(e^{-\alpha} z^{-1}\right)^{k} \quad \text { where }|z|>e^{-\alpha} \\
& X(z)=\frac{1}{1-e^{-\alpha} z^{-1}}=\frac{z}{z-e^{-\alpha}} \\
& X[k]=\frac{1}{1-e^{-\alpha} z^{-1}}=\frac{z}{z-e^{-\alpha}}
\end{aligned}
$$

if $k=e^{-\alpha}$ then $X(z)=\frac{1}{1-k z^{-1}}=\frac{z}{z-k}$

Example 3 with Poles and Zeros

- Determine the z-transform of the signal

$$
x[n]=0.5^{n} u[n]
$$

- Depict the ROC and the locations of poles and zeros of $X(z)$ in the z-plane
- Solution:
- Substituting is the definition of the z-transform

$$
\begin{aligned}
& X(z)=\left(\frac{1}{2}\right)^{0} z^{-0}+\left(\frac{1}{2}\right)^{1} z^{-1}+\left(\frac{1}{2}\right)^{2} z^{-2}+\ldots \\
& X(z)=1+\left(\frac{1}{2 z}\right)+\left(\frac{1}{4 z^{2}}\right)+\ldots
\end{aligned}
$$

- $X(z)=\sum_{n=-\infty}^{\infty} 0.5^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} 0.5^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{0.5}{z}\right)^{n}$
- This is a geometric series of infinite length in the ratio $0.5 / \mathrm{z}$; the sum converges, provided that $\left|\frac{0.5}{z}\right|<1$ or $|z|>0.5$. Hence the z-transform is

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty}\left(\frac{0.5}{z}\right)^{n}=\frac{1}{1-0.5 z^{-1}}, \quad|z|>0.5 \\
& =\frac{z}{z-0.5}, \quad|z|>0.5
\end{aligned}
$$

- Pole at $z=0$, zero at $z=0.5$,
- ROC is the light blue region

Self Test 1:

- Find the z - transform of the following signal:

$$
X(n T)=a^{n} \cos \left(\frac{n \pi}{2}\right)
$$

- Hint : $\cos \left(\frac{n \pi}{2}\right)=0$ for n odd and ± 1 for even n
- Answer:

$$
X(z)=\frac{1}{1+a^{2} z^{-2}} \quad|z|>|a|
$$

Self Test 2:

- Determine the z-transform of the signal

$$
x[n]=-u[-n-1]+0.5^{n} u[n]
$$

- Depict the ROC and the locations of poles and zeros of $X(z)$ in the zplane
- Answer:
- the sum converges, provided that $|z|>0.5$ and $|z|<1$.

$$
\begin{aligned}
& X(z)=\sum_{n=0}^{\infty}\left(\frac{0.5}{z}\right)^{n}-\sum_{n=-\infty}^{-1} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{0.5}{z}\right)^{n}+1-\sum_{k=0}^{\infty} z^{k} \\
& X(z)=\frac{1}{1-0.5 z^{-1}}+1-\frac{1}{1-z}, \quad 0.5<|z|<1 \\
& \quad=\frac{z(2 z-1.5)}{(z-0.5)(z-1)}, \quad 0.5<|z|<1
\end{aligned}
$$

Poles at $z=0.5,1, z e r o s$ at $z=0,0.75$. $R O C$ is the region in between

Continue Self-test

$$
\begin{aligned}
X(z) & =\frac{1}{1-0.5 z^{-1}}+1-\frac{1}{1-z}, \quad 0.5<|z|<1 \\
& =\frac{z(2 z-1.5)}{(z-0.5)(z-1)}, \quad 0.5<|z|<1
\end{aligned}
$$

Poles at $\mathrm{z}=0.5,1$, zeros at $\mathrm{z}=0,0.75 . \mathrm{ROC}$ is the region in between

