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The material to be covered in this lecture is 
as follows:
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 Introduction to the z-transform
 Definition of the z-transform
 Derivation of the z-transform
 Region of convergence for the transform
 Examples.



After finishing this lecture you should be 
able to:
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 Find the z-transform for a given signal utilizing the z-
transform definition

 Calculate the region of convergence for the transform



Derivation of the z-Transform
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 The z-transform is the basic tool for the analysis and synthesis 
of discrete-time systems.

 The z-transform is defined as follows:


 The coefficient ݔሺ݊ ௦ܶሻ denote the sample value and  
݊ denotes that the sample occurs	௡ିݖ sample periods after 
the	ݐ ൌ 0	reference.

 Note that the lower limit of the summation can start from 
zero if the signal is causal (Unilateral z-transform)

 Rather than starting form the given definition for the z-
transform, we may start from the continuous-time function 
and derive the z-transform. This is done in the next slide.
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Derivation of the z-transform
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 The sampled signal may be written as 
 Since ߜ ݐ െ ݊ ௦ܶ ൌ 0 for all t except 

at ݐ ൌ ݊ ௦ܶ, ݔሺݐሻ can be replaced by 
ሺ݊ݔ ௦ܶሻ.
 And Assuming ݔሺݐሻ ൌ 0	for ݐ ൏ 0. Then,

 Taking Laplace transform yields
 Rearranging
 By sifting property of the delta 

function
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Continue Derivation…
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 Defining the complex variable z as the Laplace time-shift 
operator ݖ ൌ ݁௦்

 ܺ ݏ ൌ ∑ ݔ ݊ܶ ݁ି௦௡்ஶ
௡ୀ଴ 	becomes, ܺ ݖ ൌ ∑ ݔ ݊ܶ ௡ஶିݖ

௡ୀ଴

 We could have started from the last expression but it is good 
to relate to the s-domain

 In the ݏ-domain the left-half plane corresponds to ߪ	 ൏ 	0		is 
mapped to |ݖ| ൏ 1 in the z-plane which is the region inside 
the unit circle. 
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Region of Convergence (ROC)
 ݖ ൌ ݁௦்

 ݏ ൌ ߪ ൅ ݆߱
 ݖ ൌ ݁ఙ்݁௝ఠ்

 ݖ ൌ ݁ఙ்

 ݖ	is converged for ߪ	 ൏ 0	(left-half of s-plane). This corresponds 
to ݖ ൏ 1. This is the region inside the unit circle.

 ݖ	is NOT converged for ߪ	 ൐ 	0	(right-half of s-plane). This 
corresponds to ݖ ൐ 1	which is the region outside the unit circle

 The mapping of the Laplace variable ݏ into the z-plane through 
ݖ ൌ ݁௦் is illustrated in the figure.
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The Z-Transform in Summary
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 The coefficient ݔሺ݊ܶሻ	denotes the sampled value
 The square bracket is used to indicate discrete times.
 ݊ denotes that the sample occurs	௡ିݖ sample periods after 

the ݐ ൌ 0 reference.
 ݁௦் is simply the ܶ-second time shift  
 The parameter ݖ is simply shorthand notation for the Laplace 

time shift operator
 For instance, 30ିݖସ଴ denotes a sample, having value 30, which 

occurs 40 sample periods after the t=0 reference
 Matlab has special tools for z-transform: ztrans, iztrans , pretty

ܺ ݖ ൌ ෍ݔ ݊ܶ ௡ିݖ
ஶ

௡ୀ଴

ൌ ෍ݔሾ݊ሿିݖ௡
ஶ

௡ୀ଴
Where ݖ ൌ ݁௦்		 and ݊ ൐ൌ 0



Example 1:

Dr. Ali Muqaibel 

 Determine the z-transform for the 
following signal

 Solution:
 We know that
 hence
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Example 2: Sampled Step Function 
(Important Functions)
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 Consider a unit step sample sequence 
defined by  

 Find the z-transform.

 Solution 

 The sum converges absolutely to 
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t

u(t)

T 2 T 3 T 4 T 5 T

1

0

  1 2 3
1

0

1( ) 1 ........... , 1
1

 

n

n
U z X z z z z z z

z


   




        


 
0

n

n

X z z






 



Sampled Dirac Delta Function (an other 
important function)
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 The Dirac Delta Function is defined to be
 For a delayed version of delta is defined as
 Applying the definition of the z-transform
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The Unit Exponential Sequence
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 The unit exponential sequence is defined to be

 Apply z-transform definition ି௡ஶ
௡ୀ଴ , 

we get 
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Example 3 with Poles and Zeros
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 Determine the z-transform of the signal
 ሾ݊ሿݔ 	ൌ 	0.5௡	ݑሾ݊ሿ	
 Depict the ROC and the locations of poles and zeros of X(z) in the z-plane
 Solution:
 Substituting is the definition of the z-transform 

 ܺ ݖ ൌ ∑ 0.5௡ݑ ݊ ௡ିݖ ൌஶ
௡ୀିஶ ∑ 0.5௡ିݖ௡ ൌஶ

௡ୀ଴ ∑ ሺ଴.ହ
௭
ሻ௡ஶ

௡ୀ଴

 This is a geometric series of infinite length in the ratio 0.5/z; the sum 
converges, provided that  ଴.ହ

௭
	 ൏ 	1	or  ݖ	 ൐ 0.5. Hence the z-transform is

 Pole at ࢠ ൌ ૙, zero at ࢠ ൌ ૙. ૞, 
 ROC is the light blue region
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Self Test 1:
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 Find the z- transform of the following signal:
௡

 Hint : ௡గ
ଶ

 Answer: 
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Self Test 2:
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 Determine the z-transform of the signal
ሾ݊ሿݔ 	ൌ 	െݑሾെ݊ െ 1ሿ ൅	0.5௡	ݑሾ݊ሿ	

 Depict the ROC and the locations of poles and zeros of ܺሺݖሻ in the z-
plane

 Answer:

 the sum converges, provided that  ݖ	 ൐ 0.5 and ݖ ൏ 1.
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Poles at z=0.5, 1, zeros at z=0, 0.75. 
ROC is the region in between
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Poles at z=0.5, 1, zeros at z=0, 0.75. ROC is the region in between

Continue Self-test


