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Summary of Important Concepts : Discrete 

Time Signals and Systems (Ch9) 
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 𝑓 𝑡 → 𝑓 𝑛𝑇𝑠 = 𝑓 𝑡  𝑡=𝑛𝑇𝑠 = 𝑓 𝑛 ≠ 𝑓 𝑡  𝑡=𝑛 

 Unit Step & Unit Impulse Functions 

 𝑢 𝑛 = *
1 𝑛 ≥ 0
0 𝑛

 

 𝛿 𝑛 = *
1 𝑛 = 0
0 𝑛 ≠ 0

  

 𝑟 𝑛 = 𝑛𝑢 𝑛  

 𝛿[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1] 



Equivalent Operations in Discrete Domain 
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  𝑥 𝜏 𝑑𝜏
𝑡

−∞
    𝑥[𝑘𝑛

𝑘=−∞  



𝑑

𝑑𝑡
 𝑥(𝑡)   𝑥 𝑛 − 𝑥 𝑛 − 1  

 𝑥 𝑡 𝛿 𝑡 = 𝑥 0 𝛿 𝑡  𝑥 𝑛 𝛿 𝑛 = 𝑥 0 𝛿 0  

 𝛿 𝑡 =
𝑑𝑢 𝑡

𝑑𝑡
  𝛿 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 1  

 𝑢 𝑡 =  𝛿 𝜏 𝑑𝜏
𝑡

−∞
 𝑢 𝑛 =  𝛿[𝑘]𝑛

𝑘=−∞  



Similar Time and Amplitude Operations like 

Continuous Time Signals 
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 𝑥 −𝑛  

 𝑥 𝑎𝑛  

 𝑥 𝑛 − 𝑛0  

 −𝑥 𝑛  

 𝐴 𝑥 𝑛  

 𝑥 𝑛 + 𝐵 

 

 Example: Sketch 𝑦[𝑛] given 

that 𝑥[𝑛] is shown in the 

figure  
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Common Discrete Time Signals  
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 𝑥 𝑛 = 𝐶𝑎𝑛 

 Case I: 𝐶 and 𝑎 are real 

 

 

 

 Case II: 𝐶 and 𝑎  are complex , a unity magnitude  

 Case III: 𝐶 and 𝑎  are complex 



Discrete Time System Properties 
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 One of the important blocks in discrete systems is ideal 
delay.   

 Properties of Discrete Time Signals 

 Memroy :   

 e.g.  𝑦 𝑛 = 5𝑥 𝑛 ,  𝑦 𝑛 =  𝑥 𝑘𝑛−1
𝑘=−∞   

 No memory (static) , memory (Dynamic)  

 Invertiblility  

 e.g.   𝑦 𝑛 =  𝑥 𝑛  ,  non invertible 

 Causality 

 Stability 

 Time Invariance 

 Linearity 

 

D 𝑥[𝑛] 𝑥[𝑛 − 1] 



Introduction to LTI Discrete Systems 

(Ch10) 

 Comparing Discrete System with Continuous 

Time Systems 

 Easier to analyze and design 

 Solving difference equations is easier than solving 

differential equations. 

 Characteristics are periodic in Frequency 

 Why LTI ? 

 Many physical Systems can be modeled as LTI 

 Easier To solve 

 Available resources 
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Introduction to LTI  Discrete Systems 

 Example of a system representation by block 

diagram 

 𝑦 𝑛 = 𝑇2 𝑥 𝑛 + 𝑇3 𝑇1 𝑥 𝑛 + 𝑇2(𝑥 𝑛 )  

 Recall that for time invariant 

 𝑥[𝑛] → 𝑦[𝑛] 

 𝑥[𝑛 − 𝑛0] → 𝑦[𝑛 − 𝑛0] 

 For linearity 

 𝑥1[𝑛] → 𝑦1[𝑛] 

 𝑥2[𝑛] → 𝑦2[𝑛] 

 𝑎1 𝑥1 𝑛 + 𝑎1 𝑥1 𝑛 → 𝑎1𝑦1 𝑛 + 𝑎2𝑦2 𝑛  
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Impulse Representation of Discrete Time 

signals 

 We can represent signals as sum of scaled delta 

 𝛿[𝑛] unit sample function / unit impulse function 

 𝑥−1 𝑛 = 𝑥 𝑛 𝛿 𝑛 + 1 = 𝑥 −1 𝛿 𝑛 + 1  

 𝑥0 𝑛 = 𝑥 𝑛 𝛿 𝑛 = 𝑥 0 𝛿 𝑛  

 …. 

 𝑥 𝑛 = ⋯+ 𝑥−1 𝑛 + 𝑥0[𝑛] + 𝑥1 𝑛 +⋯ 

 

 𝑥 𝑛 =  𝑥 𝑘 𝛿[𝑛 − 𝑘]+∞
𝑘=−∞  
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Convolution for Discrete-Time Systems 

 For a discrete LTI system  

 𝑥[𝑛] → 𝑦[𝑛] 

 𝑥[𝑛 − 𝑛0] → 𝑦[𝑛 − 𝑛0] 

 𝑥 𝑘 𝛿[𝑛 − 𝑛0] → 𝑥 𝑘 𝑕[𝑛 − 𝑛0] 

 Since the input can be represented as sum of deltas 

 𝑥 𝑛 =  𝑥 𝑘 𝛿[𝑛 − 𝑘]+∞
𝑘=−∞  

 then 

 𝑦 𝑛 =  𝑥 𝑘 𝑕[𝑛 − 𝑘]+∞
𝑘=−∞  

 since 𝑥 𝑛 ∗ 𝑕 𝑛 = 𝑕 𝑛 ∗ 𝑥[𝑛] we can also write  

 𝑦 𝑛 =  𝑥 𝑛 − 𝑘 𝑕[𝑘]+∞
𝑘=−∞  
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 𝑦 0 = ⋯+ 𝑥 −2 𝑕 2 + 𝑥 −1 𝑕 1 + 𝑥 0 𝑕 0 + 𝑥 1 𝑕 −1 + 𝑥 2 𝑕 −2 +⋯ 

 Sum of indices in each term equal to the sample of interest  

   

 In general 

 𝑦 𝑛 = ⋯+ 𝑥 −2 𝑕 𝑛 + 2 + 𝑥 −1 𝑕 𝑛 + 1 + 𝑥 0 𝑕 𝑛 + 𝑥 1 𝑕 𝑛 − 1
+ 𝑥 2 𝑕 𝑛 − 2 +⋯ 

   

 Recall the following properties, 

 𝛿 𝑛 ∗ 𝑕 𝑛 − 𝑛0 = 𝑕 𝑛 − 𝑛0  

 𝛿 𝑛 − 𝑛0 ∗ 𝑕 𝑛 = 𝑕[𝑛 − 𝑛0] 

 Do not confuse multiplication with convolution  

 𝛿 𝑛 𝑔 𝑛 − 𝑛0 = 𝑔 −𝑛0 𝛿 𝑛  

 𝛿 𝑛 − 𝑛0 𝑔 𝑛 = 𝑔 𝑛0 𝛿[𝑛 − 𝑛0]  
 



Properties of Convolution 

 Commutative property  

𝑥 𝑛 ∗ 𝑕 𝑛 = 𝑕 𝑛 ∗ 𝑥[𝑛] 

 Associative property   

 𝑓 𝑛 ∗ 𝑔 𝑛 ∗ 𝑕 𝑛 =
𝑓 𝑛 ∗ 𝑔 𝑛 ∗ 𝑕 𝑛 =
𝑕 𝑛 ∗ 𝑓 𝑛 ∗ 𝑔[𝑛] 

   

 Distributive property  

 𝑥 𝑛 ∗ 𝑕1 𝑛 + 𝑥 𝑛 ∗
𝑕2 𝑛 = 𝑥 𝑛 ∗ (𝑕1 𝑛 +
𝑕2 𝑛 ) 
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𝑕1[𝑛] 

𝑕2[𝑛] 

+ + 

𝑕1 𝑛 + 𝑕2 𝑛  

𝑕1[𝑛] 𝑕2[𝑛] 

𝑕1 𝑛 ∗ 𝑕2 𝑛  



Example: System Response by Convolution  

 use table to perform discrete 
convolution! 

 http://www.jhu.edu/signals/discretec
onv2/index.html 

 Total number of points = 𝑠𝑢𝑚 − 1 

 Matlab Code 

 n=0:6; 

 x=[0 3 4.5 6 0]; 

 h=[1/3 1/3 1/3]; 

 y=conv(x,h) 

 stem(n,y,'fill') 

   
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http://www.jhu.edu/signals/discreteconv2/index.html


Example II: Calculation of the impulse 

response of a discrete system  

 𝑦 𝑛 = 𝑎𝑦 𝑛 − 1 + 𝑥[𝑛] 

  

 To find the impulse response we make 
𝑥 𝑛 = 𝛿[𝑛],  then 𝑦 𝑛 = 𝑕[𝑛] 

 𝑕 0 = 𝑎𝑕 −1 + 𝛿 0 = 𝑎 0 + 1 = 1 

 𝑕 1 = 𝑎𝑕 0 + 𝛿 1 = 𝑎 1 + 0 = 𝑎 

 𝑕 2 = 𝑎𝑕 1 + 𝛿 2 = 𝑎 𝑎 + 0 = 𝑎2 

 𝑕 3 = 𝑎𝑕 2 + 𝛿 3 = 𝑎 𝑎2 + 0 = 𝑎3 

  

 𝑕 𝑛 = *
𝑎𝑛 𝑛 ≥ 0
0 𝑛 < 0

= 𝑎𝑛𝑢[𝑛] 

 The unit impulse response consists of an 
unbounded number of terms; this system is 
called an infinite impulse response (IIR) system. 
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Continue the example Solution  

Dr. Ali Muqaibel  

 In the previous example, the impulse response 

contained a finite number of nonzero terms. This 

kind of system is called finite impulse response (FIR) 

systems. 

 The impulse response is seldom used directly, 

instead we give the z-transform (to be introduced) 

 The alternatives for representing a system are: 

 Impulse response 

 Difference equation  

 Block diagram 

 z-transform 
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1 
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Example III: Step response of a discrete 

system 
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 Let 𝑎 = 0.6, for the above system the impulse response is 

𝑕 𝑛 = 0.6 𝑛𝑢[𝑛],  Find the step response 

 We can write the output as  

 𝑦 𝑛 =  𝑥 𝑛 − 𝑘 𝑕 𝑘 =∞
𝑘=−∞  𝑢 𝑛 − 𝑘 0.6 𝑘𝑢[𝑘] =  0.6 𝑘𝑛

𝑘=0
∞
𝑘=−∞  

 Using Appendix C 

  𝑎𝑘 =
1−𝑎𝑛+1

1−𝑎

𝑛
𝑘=0  

 If 𝑎 = 1 then the summation is 𝑛 + 1 for 𝑎 = 1 (we cannot use 

the formula above), otherwise 

 𝑦 𝑛 =  0.6 𝑘 =
1−0.6𝑛+1

1−0.6
= 2.5 1 − 0.6 𝑛+1 ,𝑛

𝑘=0    𝑛 ≥ 0 



Continue example 3 
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 The calculation of 𝑦 yields 

 𝑦 0 = 1 

 𝑦 1 = 1.6 

 𝑦 2 = 1.96 

 … 

 𝑦 ∞ = 2.5 

  

  

 Matlab Code  

 n=-1:10; 

 y=2.5*(1-(0.6.^(n+1))); 

 stem(n,y,'fill') 

 

-2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5



3 Properties of Discrete-Time LTI System 
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 The input-output relation for LTI systems 

 𝑦 𝑛 =  𝑥 𝑘 𝑕 𝑛 − 𝑘 =∞
𝑘=−∞  𝑥 𝑛 − 𝑘 𝑕 𝑘∞

𝑘=−∞  

 Memory 

 𝑦 𝑛 = ⋯+ 𝑥 𝑛 + 2 𝑕 −2 + 𝑥 𝑛 + 1 𝑕 −1 + 𝑥 𝑕 𝑕 0
+ 𝑥 𝑛 − 1 𝑕 1 +⋯ .= 𝑕 0 𝑥 𝑛  

 For a memoryless system 𝑕 𝑛 = 𝑘𝛿 𝑛  

 A memoryless LTI system is then a pure gain. 

 Invertibility  

 𝑕 𝑛 ∗ 𝑕𝑖 𝑛 = 𝛿[𝑛] 
 z-transform (to be discussed) is one way to find the inverse 

system. 

  Example: If the system is sin [
𝜋𝑛

2
] which is zero for n even, then 

the system us not invertible. 



Continue properties 
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 Causality 

 A signal that is zero for 𝑛 < 0 is called a causal signal 

 For a causal system 

 𝑕 𝑛 = 0 𝑓𝑜𝑟 𝑛 < 0 

 We can write the convolution equation as 

  𝑦 𝑛 =  𝑥 𝑘 𝑕 𝑛 − 𝑘 =𝑛
𝑘=−∞  𝑥 𝑛 − 𝑘 𝑕 𝑘∞

𝑘=0  

 Stability  

  A system is BIBO stable if 

  𝑕 𝑘 < ∞∞
𝑘=−∞  

 For an LTI casual system, this condition reduces to  

  𝑕 𝑘 < ∞∞
𝑘=0  



Example: Stability of LTI discrete systems 
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 Study the memory, causality, and stability characteristics of the following : 

a) 𝑕 𝑛 =
1

2

𝑛
𝑢 𝑛  

b) 𝑕 𝑛 = 2 𝑛𝑢 𝑛  

c) 𝑕 𝑛 =
1

2

𝑛
𝑢[𝑛 + 1] 

 a) has memory (dynamic) since 𝑕 𝑛 ≠ 𝐾𝛿 𝑛  

 Causal 𝑕 𝑛 = 0 𝑓𝑜𝑟 𝑛 < 0 

 Stable (Appendix C)  

  𝑕 𝑛 =∞
𝑛=−∞  

1

2

𝑛
=

1

1−
1

2

= 2∞
𝑛=0  

 b) is similar but unstable  

  𝑕 𝑛 =∞
𝑛=−∞  2 𝑛 = 1 + 2 + 4 + 8 +⋯∞

𝑛=−∞  

 c) The system has memory , not causal 𝑕 −1 = 2 ≠ 0 

 The system is stable =2+ 
1

2

𝑛
= 2 +

1

1−
1

2

= 4∞
𝑛=0  



Unit Step Response 
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 The unit step response is denoted 

 𝑠 𝑛 =  𝑢 𝑛 − 𝑘 𝑕 𝑘 =  𝑕[𝑘]𝑛
𝑘=−∞

∞
𝑘=−∞  

 This is because 𝑢 𝑛 − 𝑘 = 0 𝑓𝑜𝑟 𝑛 − 𝑘 < 0 𝑜𝑟 𝑓𝑜𝑟 𝑘 > 𝑛 

 Also we can form a difference equation 

 𝑠 𝑛 − 𝑠 𝑛 − 1 =  𝑕 𝑘𝑛
𝑘=−∞ − 𝑕 𝑘 = 𝑕[𝑛]𝑛−1

𝑘=−∞  

 The unit step response completely describes the input 

output characteristics of a system 

   

 See examples 10.6 & Example 10.7  

 



Example: Step response from the impulse 

response  
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 The system 𝑕 𝑛 = 0.6𝑛𝑢 𝑛  is dynamic , causal , and stable 

 The step response is 𝑠 𝑛 =  𝑕 𝑘 =  0.6𝑘𝑛
𝑘=0

+∞
𝑘=−∞  

 𝑠 𝑛 =  0.6𝑘 =
1−0.6𝑛+1

1−0.6
𝑢 𝑛 = 2.5 1 − 0.6𝑛+1 𝑢[𝑛]𝑛

𝑘=0  

 𝑢 𝑛  is necessary, because 𝑠 𝑛 = 0 𝑓𝑜𝑟 𝑛 < 0 𝑐𝑎𝑢𝑠𝑎𝑙  

 To verify 
 𝑕 𝑛 = 𝑠 𝑛 − 𝑠 𝑛 − 1 =  
2.5 1 − 0.6𝑛+1 𝑢 𝑛 − 2.5 1 − 0.6𝑛 𝑢 𝑛 − 1  

 For 𝑛 = 0, 𝑕 0 = 2.5 1 − 0.6 = 1     (First term only) 

 For 
𝑛 ≥ 1, 𝑕 𝑛 = 2.5 1 − 0.6𝑛+1 − 1 + 0.6𝑛 = 2.5 0.6𝑛 1 − 0.6
= 0.6𝑛 

 𝑕 𝑛 = 0.6𝑛𝑢[𝑛] 



Difference Equation Model 
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 LTI discrete-time systems are usually modeled by a linear 
difference equation with constant coefficients. 

 Digital filters are important example 

 Note the difference between the system model and the 
physical system 

 𝑎0𝑦 𝑛 + 𝑎1𝑦 𝑛 − 1 +⋯+ 𝑎𝑁−1𝑦 𝑛 − 𝑁 + 1 +
𝑎𝑁𝑦 𝑛 − 𝑁 =
𝑏0𝑥 𝑛 + 𝑏1𝑥 𝑛 − 1 +⋯+ 𝑏𝑀−1𝑥 𝑛 −𝑀 + 1 +
𝑏𝑀𝑥 𝑛 −𝑀  

  𝑎𝑘𝑦 𝑛 − 𝑘 =  𝑏𝑘𝑥 𝑛 − 𝑘 ,  𝑎0 ≠ 0𝑀
𝑘=0

𝑁
𝑘=0  

 𝑁𝑡ℎ order equation : the max shift of the dependent variable.  

 Example: 𝑦 𝑛 = 0.6𝑦 𝑛 − 1 + 𝑥[𝑛], first order 

 Example:  𝑦 𝑛 =
𝑥 𝑛 +𝑥 𝑛−1 +𝑥 𝑛−2

3
 , zeros order 


