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The material to be covered in this lecture is as follows: 
 

 Introduction to the z-transform 
 Definition of the z-transform 
 Derivation of the z-transform 
 Region of convergence for the transform 
 Examples. 

 
 



After finishing this lecture you should be able to: 
 

 Find the z-transform for a given signal utilizing the z-transform definition 
 Calculate the region of convergence for the transform 



Derivation of the z-Transform 
 
• The z-transform is the basic tool for the analysis and synthesis of discrete-time systems. 
• The z-transform is defined as follows: 
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• The coefficient ( )x nT  denote the sample value and nz −  denotes that the sample occurs n sample 

periods after the t=0 reference. 
• Rather than starting form the given definition for the z-transform, we may start from the 

continuous-time function and derive the z-transform. This is done in the next slide. 



Derivation of the z-transform 
 
The sampled signal may be written as  
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Since ( ) 0t nTδ − =  for all t except at t=nT, x(t) can be replaced by x(nT). 
Assuming x(t)=0 for t<0. Then, 
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Taking Laplace transform yields 
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Rearranging 
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By sifting property of the delta function 
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Continue Derivation… 
Defining the complex variable z as the Laplace time-shift operator 
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We could have started from here but it is good to relate to the s-domain 
 

 
In the s-domain the left-half plane corresponds to σ < 0  is mapped to |z|<1 in the z-plane which 
is the region inside the unit circle.  
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Region of Convergence (ROC) 
|z| is converged for σ <0 (left-half of s-plane). This corresponds to |z|<1. This is the region inside 
the unit circle. 
|z| is NOT converged for σ > 0 (right-half of s-plane). This corresponds to |z|>1 which is the 
region outside the unit circle 
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The mapping of the Laplace variable s into the z-plane through z=esT is illustrated in the figure 
below: 
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The Z-Transform in Summary 
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• The coefficient x(nT) denotes the sampled value 
•  z -n denotes that the sample occurs n sample periods after the t=0 reference. 
•  esT is simply the T-second time shift   
• The parameter z is simply shorthand notation for the Laplace time shift operator 
• For instance, 30z -40 denotes a sample, having value 30, which occurs 40 sample periods 

after the t=0 reference 
• The definition of z-transform can also be written as: (other text books) 
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where the square bracket is used to indicate discrete times. 
• It worth to mention that Matlab has special tools for Z-transform. 

 
 



Example 39.1 
Determine the z-transform for the following signal 
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• Solution: 
We know that 
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Example 39.2: Sampled Step Function (Important Functions) 
 
Consider a unit step sample sequence defined by 
                        x[n]=1, n≥0 
Find the z-transform. 

 
 
Solution: 
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The sum converges absolutely to 1/(1-z-1) outside the unit circle |z|>1 
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Sampled Dirac Delta Function (an other important function) 
 
The Dirac Delta Function is defined to be 
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For a delayed version of delta is defined as 
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Applying the definition of the z-transform 
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The Unit Exponential Sequence 
The unit exponential sequence is defined to be 
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Apply z-transform definition  
0

( ) ( ) k

k
X z x k z

∞
−

=

= ∑  we get  
1

0 0

1

( ) ( )

1( )
1

k k k

k k

X z e z e z

zX k
e z z e

α α

α α

∞ ∞
− − − −

= =

− − −

= =

= =
− −

∑ ∑
 

where | | Tz e α−>  
if Tk e α−=  then 

1

1( )
1

zX z
kz z k−= =

− −
 

 

k

1
1

1( )
1

zX k
e z z eα α− − −= =

− −



Example 39.3 
Determine the z-transform of the signal 
                        x[n] = 0.5n u[n]  
Depict the ROC and the locations of poles and zeros of X(z) in the z-plane 
 
Solution: 
Substituting is the definition of the z-transform 
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This is a geometric series of infinite length in the ratio 0.5/z; the sum converges, provided that 
|0.5/z| < 1 or  |z| >0.5. Hence the z-transform is 
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Pole at z=0, zero at z=0.5, ROC is the light blue region 
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Self Test: 
1) Determine the z-transform for the following signal 
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  Solution: 
• Utilizing the definition of the z-transform 
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2) Find the z- transform of the following signal: 
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3) Determine the z-transform of the signal 
                        x[n] = -u[-n-1]+ 0.5n u[n]  
Depict the ROC and the locations of poles and zeros of X(z) in the z-plane 
Solution: Click to show answer: 
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the sum converges, provided that  |z| >0.5 and  |z|<1. 
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Poles at z=0.5, 1, zeros at z=0, 0.75. ROC is the region in between 
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