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The material to be covered in this lecture is as follows: 
 

 Introduction to discrete-time signals and systems 
 Analog to Digital Conversion 

 Sampling (Ideal and Non-ideal) 
 Quantization 
 Encoding 

 



After finishing this lecture you should be able to: 
 

 Distinguish discrete from continues signals 
 Perform the steps required for analog to digital conversion 

 Find the proper sampling instants and the associated sampled values 
 Perform quantization and estimate its effects on the signal quality  
 Convert the quantized values into code words 

 Sketch the spectrum of the sampled signal using ideal and non-ideal sampling 



Introduction to Discrete-Time Signals and Systems 
 
• Signals in life can be analog or digital. 
• Nowadays, with the advances in digital systems and personal computers one can do 

advance processing for digital signals. This includes: compression, encryption, error-
control coding…. 

• There are many other advantages for digital systems. 
• To be able to process an analog signal in the same way it has to be converted to a 

digital form. 
• For the conversion to be accomplished there are three main steps 

o Sampling  
o Quantization 
o Encoding 

• The analog signal is converted into discrete-time signal by means of sampling 
• Discrete-time signals are defined by specifying the value of the signal only at discrete 

times (sampling instants) 
 
 
 



Analog to Digital Conversion 
 
• Include the animation already prepared  (flash) analog digital 



Analog to Digital Conversion 
 
The stages for analog to digital conversion may be summarized in the following figure 
  
 
 
 

 
 
The emphasis on the remaining part will be on discrete-time signals which are signals after the 
sampler. We will assume that the error introduced by the quantizer to be relatively ignorable. 

Sampler  Quantizer Encoder 

discrete time 
continuous amp.

Digital output signaldiscrete time 
discrete amp.

Analog input signal  

continuous time 
continuous amp. 



Example 37.1 
Given the signal 

( ) ( )( ) 8 1 cos 120 cos 100x t t tπ π= +⎡ ⎤⎣ ⎦  
which is sampled at the rate of (50 samples per second).Each sample is quantized to the closest 
integer between 0 and 15. Each of the integer values is encoded using a 4 bit code word 
according to the usual binary representation of integers (i.e. 0=0000,1=0001, ........, 15=1111) 
Determine the sampled value, the quantized value and the binary code for the first three samples 
starting at t=0. 
 
Answer 
 
Sampling frequency, sf  = 150 Hz. 
Sampling Interval, 1 1 6.67

150s
s

T
f

= = = ms. 

Sampling instants, , 0,1,2,3,.......st nT n= =  
  = 0, 6.67,13.33 ms 
The quantized values can be found by substituting st nT← . 
The quantized values are found by first rounding to the closest integer between 0 and 15 and 
then represent the answer in binary form. The table summarizes the results.  (Animate the table) 

n Time 
(ms)

Sampled 
value 

Quantized 
value 

Binary 
Code 

0 0 16 15 1111 
1 6.67 11.23 11 1011 
2 13.33 6.76 7 0111 

 



Sampling 
 
• The sampled signal, xs(t) can be generated by applying a switch to the input signal x(t) as 

shown in the figure: 
 
   x(t)                     xs(t) 
 
   The switch closes at the sampling instances.  
• Ideally, the switch when it is closed it will pass the input signal to the output and when it is 

opened nothing will pass to the output.  
• Mathematically, this is like multiplying the input signal by another periodic signal, p(t) which 

can take only two values 0 or 1.   
  
The signal p(t) is represented in the figure   

 

×



where 1

s

T
f

= ,and τ is the sampling duration which is theoretically zero. 

( ) ( ) ( )sx t x t p t=  (1) 
 
• Since p(t) is periodic it can be represented by it exponential Fourier series 

2( ) sj f t
n

n

p t C e π
∞

=−∞
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where  
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2
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fS is the sampling frequency or the frequency  of the periodic signal of p(t) 
1

sf hertz
T

=  
by substituting (2) into (1) 

2( ) ( ) sj f t
s n

n

x t C x t e π
∞

=−∞

= ∑   (4) 

Now, by substituting (3) into (4) with interchanging the order of summation and integration, the 
result can be put in the following form 

( ) ( ) ( ) ( ) 2 sjn f t
s n

n

x t x t p t C x t e π
∞

+

=−∞

= = ∑  



Spectrum of Sampled Signal 
 
We can define the Fourier transform of xs(t) as, 

( ) ( ) ( ) 22 2sjn f tj ft j ft
s s n

n
X f x t e dt C x t e e dtππ π

∞ ∞ ∞
+− −

=−∞−∞ −∞

= = ∑∫ ∫  

with interchanging summation & integration 
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∞∞
− −

=−∞ −∞

= ∑ ∫  

Hence, the Fourier transform of the sampled signal, xs(t) is, 
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s n s s
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Spectrum of the sampled signal 
 
The spectrum of the sampled continuous times-signal x(t) is composed of the spectrum 
of x(t) plus the spectrum of x(t) translated to each harmonic of the sampling frequency. 
 

 
 

Note that:      X(f)=0 for  |f | ≥ fh     and           fs ≥ 2fh 
 
• From the spectrum of the sampled signal we can clearly see that the original continuous signal 

can be completely reconstructed by using a low pass filter. Note that constant scaling factor 
C0 can be easily accounted for using an amplifier with gain equal to 1/C0 

• Now we are ready to state the sampling theorem.
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Sampling Theorem 
 
A bandlimited signal x(t), having no frequency components above fh Hertz is completely 
specified by samples that are taken at a uniform rate greater then 2 fh Hertz. 
(the time between samples is no more than 1/(2fh) seconds). 
 
2fh  is known as Nyquist rate. 
 
 
Please see if we can do some thing like the visit the website by John Hopkins University or at 
least provide link 
 
http://www.jhu.edu/~signals/sampling/index.html 
 



Ideal Sampling: Impulse-Train Sampling Model 
 

Consider p(t) is composed of an infinite train of impulse functions of period T. Thus, 

( ) ( )
n

p t t nTδ
∞

=−∞

= −∑  

which is the sampling function illustrated in the figure below: 

 

Ideal sampler
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t

f(t)

TΔ 2 TΔ 3 TΔ 4 TΔ 2 T− Δ2 T− Δ3 T− Δ4 T− Δ5 T− Δ T−Δ 0

( ) ( ) ( )s
n

f t T f t t n Tδ
∞

=−∞

= Δ − Δ∑

TΔ 2 TΔ 3 TΔ 4 TΔ 5 TΔ2 T− Δ3 T− Δ4 T− Δ5 T− Δ T−Δ 0

t( )p t



Continue.. Impulse-Train Sampling Model 
 
The values of Cn, yields 

( ) 22

2

1
s

T
jn f t

TnC t e dt
T

πδ −
−= ∫  

Evaluated at t=0 (sifting property), Thus 
1

n sC f
T

= =  
Cn = fs   for all n 
Hence, the spectrum of x(t) yields, 

( ) ( )s s sX f f X f nf
∞

−∞

= −∑  

 



Ideal Sampling: Impulse-Train Sampling Model 

         
 
 
 

( ) ( )s s sX f f X f nf
∞

−∞

= −∑  

More Examples will be given in the coming lecture when we consider signal reconstruction
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Self Test: 
 
     The figure below shows Fourier spectrum of a signal g(t) 

 
 
 

1. Determine the Nyquist interval and the sampling rate for g(t)   
2. Sketch the spectrum of the sampled signal, if g(t) is sampled (using uniformly spaced impulses) 

at  1.5* Nyquist rate. 
 
 
Animate solution 
1.     Nyquist Interval =5 micro seconds                 Nyquist rate = 200kHz     
 
2.    1.5*Nyquist rate=300 kHz 
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