#### Applications of the Laplace Transform

Analysis of Electrical Networks with Initial Conditions

Lecture #35

The material to be covered in this lecture is as follows:

- ➤ Network analysis using Laplace Transform with initial-conditions.
- ➤ More examples on circuit analysis including dependent sources and/or op-amps.
- > Finding the response of the circuit due to different inputs in the Laplace domain.

#### After finishing this lecture you should be able to:

- ➤ Draw the equivalent Laplace transform for electrical networks with sources and initial conditions.
- ➤ Apply electrical network concepts; Thevinin equivalent, Norton equivalent, source transformation, .... etc. in the Laplace domain.
- ➤ Perform circuit analysis of problems involving both initial conditions and sources using the concept of Laplace transformed network.

### Network Analysis using the Laplace Transform

- ➤ In this lecture we consider the more general form of circuit analysis in the Laplace domain.
- > Problems involving both initial conditions and sources are considered
- ➤ Remember, the first step is to redraw the circuit in the Laplace domain then Ohm's law can be applied to the resulting impedances.
- ➤ For the capacitor or inductor we should choose the model that will make the analysis simpler whenever possible.\
- ➤ Do you still remember the equivalent Laplace transform for the capacitor, inductor, and resistor?

(Click next for a summary of the models with initial conditions. This the same slide form Lecture 34)

### -Circuit Elements Models



# Example 35.1: Circuit with Dependent Source

Find v(t) for the circuit shown in the figure below subject to the initial conditions v(0)=2 V.



In the frequency domain, we may redraw the circuit as shown.



• Note the voltage to be determined is the voltage across the series combination of a 1 F capacitor and a voltage source having a value of v(0)/s=2/s.

## Continue ... Solution for Example 35.1

By KCL at node  $V_1(s)$  (animate)

$$I(s) + 2I(s) = \frac{V_1(s) - V(s)}{5}$$

from which

$$3I(s) = 3\left[\frac{-4/s - V_1(s)}{3}\right] = \frac{V_1(s) - V(s)}{5}$$

simplifying this expression, we get

$$6V_1(s) - V(s) = \frac{-20}{s}$$
 (35.1)

again by KCL at node a, (animate)

$$\frac{V_1(s) - V(s)}{5} = \frac{V(s) - 2/s}{1/s}$$

from which

$$V_1(s) - (1+5s)V(s) = -10$$
 (35.2)

By combining Equation (35.1) and Equation (35.2) we get

$$V(s) - 6(1+5s)V(s) = \frac{20}{s} - 60$$

$$\Rightarrow V(s) = \frac{2(s-1/3)}{s(s+1/6)} = \frac{-4}{s} + \frac{6}{s+1/6}$$

By inverse Fourier transform,

$$v(t) = -4u(t) + 6e^{-t/6}u(t) = (-4 + 6e^{-t/6})u(t)$$
 V

## Example 35.2: Parallel *RLC* Circuit

For the parallel *RLC* shown in the figure, suppose that i(0)=-4 A and v(0)=0 V. Find v(t) and i(t) for the case that R=6 $\Omega$ , L=7 H, C=1/42 F, and is(t)=6 u(t) A.



The Laplace transformed circuit is shown in the Figure . (animate)



- ❖ Note the parallel model is selected because it made the analysis easier since the circuit has all parallel elements.
- Note the direction of the parallel source in accordance with the model.
- \* Reversing the direction of the current source is equivalent to multiplying its value by a minus sign.

#### By KCL, (animate)

$$\frac{6}{s} = \frac{V(s)}{6} + \frac{V(s)}{7s} - \frac{4}{s} + \frac{V(s)}{42/s}$$

#### Rearrange

$$\frac{6}{s} - \frac{4}{s} = \left(\frac{1}{6} + \frac{1}{7s} + \frac{s}{42}\right)V(s)$$

Combine fractions and simplify

$$\frac{10}{s} = \frac{7s + 6 + s^2}{42s} V(s)$$

Now solving for the voltage,

$$V(s) = \frac{420}{s^2 + 7s + 6}$$

Using partial fraction expansion we may write

$$V(s) = \frac{420}{(s+1)(s+6)} = \frac{K_1}{s+1} + \frac{K_2}{s+6}$$

$$k_1 = \frac{420}{s+6} \Big|_{s=-1} = \frac{420}{5} = 84$$

$$k_2 = \frac{420}{s+1} \Big|_{s=-6} = \frac{420}{-5} = -84$$

Using inverse Laplase transform,

$$v(t) = 84e^{-t}u(t) - 84e^{-6t}u(t) = 84(e^{-t} - e^{-6t})u(t)$$
 V

To find the current, remember to consider the current f the two branches in the model

$$I(s) = \frac{V(s)}{7s} - \frac{4}{s} = \frac{1}{7s} \left( \frac{420}{(s+1)(s+6)} \right) - \frac{4}{s} = \frac{60}{s(s+1)(s+6)} - \frac{4}{s}$$
$$= \frac{60 - 4(s+1)(s+6)}{s(s+1)(s+6)} = \frac{-4s^2 - 28s + 36}{s(s+1)(s+6)} = \frac{k_0}{s} + \frac{k_1}{s+1} + \frac{k_2}{s+6}$$

The constants for the partial fraction expansion are found as follows:

$$k_{0} = \frac{-4s^{2} - 28s + 36}{(s+1)(s+6)} \bigg|_{s=0} = \frac{36}{6} = 6$$

$$k_{1} = \frac{-4s^{2} - 28s + 36}{s(s+6)} \bigg|_{s=-1} = \frac{-4 + 28 + 36}{(-1)(5)} = -12$$

$$k_{2} = \frac{-4s^{2} - 28s + 36}{s(s+1)} \bigg|_{s=-6} = \frac{-144 + 168 + 36}{-6(5)} = 2$$

By inverse Laplace transform

$$i(t) = 6u(t) - 12e^{-t}u(t) + 2e^{-6t}u(t) = 2(3 - 6e^{-t} + e^{-6t})u(t)$$
 A

As a practice you might verify the relation between the voltage and the current of the inductor. Remember

$$v_L(t) = L \frac{di_L(t)}{dt}$$

# Example 35.3: Circuit with Op-amp

Determine the ramp response vo(t) for the op-amp circuit shown in the figure below. Assume zero-initial conditions



Ans.

The frequency domain representation is shown (animate)



Since r(t) = t u(t), then the Laplace transform is  $1/s^2$ .

By KCL at node  $V_1(s)$ , (animate if possible)

$$\frac{V_1(s) - 1/s^2}{1} + \frac{V_1(s) - V_o(s)}{1} + \frac{V_1(s) - V_o(s)}{1/s} = 0$$

From which

$$(s+2)V_1(s) - (s+1)V_o(s) = \frac{1}{s^2}$$
 (35.3)

The voltage across the capacitor labeled 5/s is

$$V_o(s) = \frac{5/s}{1+5/s} V_1(s) = \frac{5}{s+5} V_1(s) \Rightarrow V_1(s) = \frac{s+5}{5} V_o(s)$$

Now substituting the expression for  $V_1(s)$  into Equation (35.3) we get

$$(s+2)\frac{s+5}{5}V_o(s) - (s+1)V_o(s) = \frac{1}{s^2}$$

Solving for the output voltage

$$Vo(s) = \frac{5}{s^2(s^2 + 2s + 5)}$$

Using partial fraction expansion you should be able to show that

$$V_o(s) = \frac{-2/5}{s} + \frac{1}{s^2} + \frac{2/5(s+1)}{(s+1)^2 + 2^2} + \frac{1/5(2)}{(s+1)^2 + 2^2}$$

Hence the ramp response can be found using inverse Laplace transform

$$vo(t) = -\frac{2}{5}u(t) + tu(t) + \frac{2}{5}e^{-t}\cos 2t \, u(t) + \frac{1}{5}e^{-t}\sin 2t \, u(t)$$
$$= \left[ -\frac{2}{5} + t + e^{-t} \left( \frac{2}{5}\cos 2t + \frac{1}{5}\sin 2t \right) \right] u(t) \quad V$$

### **Practice**

Consider the RC circuit shown in the Figure. Instead of the output is taken across the resistor. Find the output for the input  $v_s(t) = 5\cos 2t \ u(t) V$ 

And an initial capacitor voltage of  $v_0=3$  V with RC=1 s.



#### Ans.

Click here to see the answer

$$v_o(t) = \left\{-2e^{-t} + 4\left[\cos 2t - \frac{1}{2}\sin 2t\right]\right\}u(t)$$

Note in the next lecture this problem will be solved in details