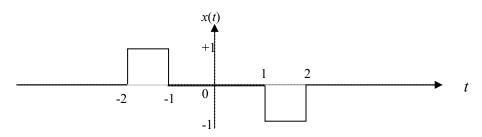
	Serial #
King Fahd University of Petroleum & M	linerals
Electrical Engineering Department	- 1 points for not
EE207: Signals and Systems (111)	
Quiz 4: Fourier Transform	number
Name:	Sec.

1. For the following signal find the Fourier Transform using two different methods and make sure that the answers are the same:



a. By definition:
$$X(f) = \int_{1}^{+\infty} x(t)e^{-j2\pi ft} dt$$
. (4 points)
 $X(f) = \int_{-2}^{1} (1) e^{-j2\pi ft} \int_{0}^{+\infty} dt + \int_{0}^{1} (-1) e^{-j2\pi ft} dt$
 $= \frac{-1}{32\pi ft} \left[e^{32\pi ft} e^{34\pi ft} \right] + \frac{1}{32\pi ft} \left[e^{-34\pi ft} - e^{-32\pi ft} \right]$
 $= \frac{1}{3\pi ft} \left[\frac{e^{34\pi ft} - 34\pi ft}{2} \right] - \frac{1}{3\pi ft} \left[\frac{e^{32\pi ft} ft}{2} \right] = \frac{3}{\pi ft} \left[\frac{e^{32\pi ft} - 6\pi ft}{2} \right]$

b. Taking the derivative until you get impulses. Then transform to frequency domain, then use the integral theorem to find F.T of x(t). (4 points)

$$\begin{aligned} \dot{x}(t) &= s(t+2) - s(t+1) - s(t-1) + s(t+2) \\ \dot{x}(t) &= e^{J4\pi f} J^{2\pi f} - J^{2\pi f} - J^{4\pi f} \\ &= 2 \cos(4\pi f) - 2 \cos(2\pi f) \\ = 2 \cos(4\pi f) - 2 \cos(2\pi f) \\ = \frac{1}{J_{2\pi f}} \dot{x}(f) \\ &= \frac{J}{\pi f} \left[\cos_2 2\pi f - \cos_3 4\pi f \right] \end{aligned}$$

c. Show that the two answers are equivalent. (1 point)

Both answers are having the same form

d. Is the F.T pure real, pure imaginary or complex? Why? (1 point)

It is pure imaginary because x(t) is odd signal

TABLE 4-1	
Fourier Transform	Theorems ^a

Name of Theorem		
1. Superposition (a_1 and a_2 arbitrary constants)	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(f) + a_2 X_2(f)$
2. Time delay	$x(t-t_0)$	$X(f)e^{-j2\pi f t_0}$
3a. Scale change	x(at)	$ a ^{-1}X\left(rac{f}{a} ight)$
b. Time reversal	x(-t)	X(-f) = X * (f)
4. Duality	X(t)	x(-f)
5a. Frequency translation	$x(t)e^{j\omega_0 t}$	$X(f-f_0)$
b. Modulation	$x(t) \cos \omega_0 t$	$\frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$
6. Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
7. Integration	$\int_{-\infty}^{t} x(t') dt'$	$(j2\pi f)^{-1}X(f) + \frac{1}{2}X(0)\delta(f)$
8. Convolution	$\int_{-\infty}^{\infty} x_1(t-t') x_2(t') dt'$	
	$J_{-\infty}$	$X_{1}(f)X_{2}(f)$
	$= \int_{-\infty}^{\infty} x_1(t') x_2(t-t') dt'$	
	$J_{-\infty}$	c.∞
9. Multiplication	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(f-f') X_2(f') df'$
		$=\int_{-\infty}^{\infty} X_1(f')X_2(f-f') df$

 ${}^{a}\omega_{0} = 2\pi f_{0}$; x(t) is assumed to be real in 3b.

TABLE	4-2
Fourier	Transfor

Pair Number	x(t)	X(f)	Comments on Derivation
1.	$\Pi\left(rac{t}{ au} ight)$	$ au\sin au f$	Direct evaluation
2.	2W sinc 2Wt	$\Pi\left(rac{f}{2W} ight)$	Duality with pair 1, Example 4-7
3.	$\Lambda\left(\frac{t}{\tau}\right)$	$ au\sin^2 au f$	Convolution using pair 1
4.	$\exp(-\alpha t)u(t),\alpha>0$	$\frac{1}{\alpha + j2\pi f}$	Direct evaluation
5.	$t \exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{(\alpha + j2\pi f)^2}$	Differentiation of pair 4 with respect to α
6.	$\exp(-\alpha t), \alpha > 0$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$	Direct evaluation
7.	$e^{-\pi(t/\tau)^2}$	$\tau e^{-\pi (f/\tau)^2}$	Direct evaluation
8.	$\delta(t)$	1	Example 4-9
9.	1	$\delta(f)$	Duality with pair 7
10.	$\delta(t-t_0)$	$\exp(-j2\pi ft_0)$	Shift and pair 7
11.	$\exp(j2\pi f_0 t)$	$\delta(f-f_0)$	Duality with pair 9
12. 13.	$\cos 2\pi f_0 t$ $\sin 2\pi f_0 t$	$\frac{\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)}{\frac{1}{2i}\delta(f-f_0) - \frac{1}{2i}\delta(f+f_0)} \right\}$	Exponential representation of cos and sin and pair 10
14.	u(t)		Integration and pair 7
15.	sgn t	$(j2\pi f)^{-1} + \frac{1}{2}\delta(f)$ $(j\pi f)^{-1}$	Pair 8 and pair 13 with superposition
16.	$\frac{1}{\pi t}$	$-j \operatorname{sgn}(f)$	Duality with pair 14
17.	$\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\lambda)}{t - \lambda} d\lambda$	$-j \operatorname{sgn}(f)X(f)$	Convolution and pair 15
18.	$\sum_{m=-\infty}^{\infty} \delta(t-mT_s)$	$f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s),$ $f_s = T_s^{-1}$	Example 4-10

Good Luck, Dr. Ali Muqaibel