King Fahd University of Petroleum & Minerals **Electrical Engineering Department** EE207: Signals and Systems (122) Dr. Ali Hussein Muqaibel

Quiz 2: Continuous-Time Signals and Systems

Name: Key

a) Express $x_1(t)$ as a function of $x_2(t)$ Explain the components of your answer

 $x_1(t) = -2x_2(4t) + 2$ Invert the magnitude of $x_2(t)$ and scale the magnitude by two. Then shift the magnitude up by 2 units and finally compress in time by 4 times.

b) Evaluate the following integrals:

 $\int_{-\infty}^{+\infty} \cos(3t)\,\delta(t)dt = \cos\bigl(3(0)\bigr) = 1$ a.

b.
$$\int_{-\infty}^{t} \delta(\tau+1)d\tau = u(t+1)$$

c.
$$\int_{-\infty}^{+\infty} \sin(3t+1) \,\delta(t+1) dt = \sin(3(-1)+1) = \sin(-2) = 0.9093$$

c) Determine whether the system described by y(t) = x(2t) + 1 is (3 points)

Just circle the correct answer

- a. Memoryless (Yes, No)
- Causal (Yes, No) b.
- Time invariant (Yes, No) c.
- Invertible (Yes, No) d.
- e. Stable (Yes, No)
- f. Linear (Yes, No)

Why y(t) = x(2t) is time-varying?

We take one signal $x_1(t)$ and find its output $y_1(t)$. Then we delay the input to get $x_2(t)$ and find the output $y_2(t)$ and see if it is equal to a delayed version of $y_1(t)$. If yes then it is time-invariant. $y_1(t) = x_1(2t)$ by definition Let $x_2(t) = x_1(t - t_0)$ which is delayed version of the original input $y_2(t) = x_2(2t) = x_1(2t - t_0)$ from the relation between $x_1(t)$ and $x_2(t)$

 $y_1(t-t_0) = x_1(2(t-t_0)) = x_1(2t-2t_0)$ different than $y_2(t)$ hence time-varing

You can also use simple numbers :

y(1)	=	<i>x</i> (2)
y(2)	=	<i>x</i> (4)
y(3)	=	<i>x</i> (6)

Now delay the above results by 1 second:

y(0) = x(1)y(1) = x(3)y(2) = x(5)

Now y(1) depends on x(3) instead of x(2) and so on

Serial # - 1 points for not writing your serial number

ver.1

(3 points)

(4 points)