King Fahd University of Petroleum & Minerals

Electrical Engineering Department EE207: Signals and Systems (042)

Major Exam II

May 9, 2005 06:30 PM-08:00PM Building 7-119

	Serial #	
	-2 points for not writing your serial #	
Name:		

ID:_____

Sec. 1

Question	Mark
1	/12
2	/13
3	/7
4	/8
Total	/40

Instructions:

- 1. This is a closed-books/notes exam.
- 2. The duration of this exam is one and half hours.
- 3. Read the questions carefully. Plan which question to start with.
- 4. Write explicitly the formulas that you use in your solution (e.g. by KVL ... by KCL). No credit will be given if you do not show your formulas.
- 5. Work in your own.
- 6. CLEARLY LABEL ALL SIGNIFICANT VALUES ON BOTH AXIES OF ANY SKETCH
- 7. Strictly no mobile phones are allowed.

Good luck

Dr. Ali Muqaibel

Problem 1: (12 points)

Choose (Circle) the correct <u>answer/answers</u>:

a. If x(t) is a real and even function of time then it is Fourier transform, X(f) is

(real, imaginary, complex, even, odd) function of frequency.

b. The spectrum of a non-periodic signal is

(continuous in frequency, discrete in frequency).

c. The energy spectral density G(f)=

$$(|X(f)|, |X(f)|^2, \int_{-\infty}^{\infty} |X(f)|^2 df, \int_{-\infty}^{\infty} |X(f)| df)$$

d. We say that a rational function is proper if the degree of the numerator polynomial is **(less, equal, greater, less than or equal, greater than or equal)** than the degree of the denominator polynomial.

Select True or False (Correct answer +1, Wrong answer -0.5)	(4 points)
a. Ideal low pass filters cannot be implemented because they are non-causal.	(True , False)
b. Many signals are not Fourier transformable.	(True , False)
c. Fourier transform can be used to find the transient response.	(True, False)
d. The rise time of a pulse is inversely proportional to its bandwidth.	(True, False)

A signal has Laplace transform

(4 points)

$$X(s) = \frac{s+2}{s^2 + 4s + 5}$$

Find the Laplace transforms, Y(s), of the following signals. In each case, tell what Laplace transform theorems you used to find the signal.

(a) $y_1(t) = x (2t - 1)u (2t - 1)$

(b)
$$y_2(t) = x(t) * x(t)$$

(c)
$$y_3(t) = e^{-3t} x(t)$$

(4 points)

Problem 2: (13 points)

1. Given the function f(t) shown in the Figure. Use the differentiation property to find the Fourier transform. Express the final answer in terms of trigonometric functions.

2. Given
$$X(s) = \frac{9s}{(s+2)^2(s+8)}$$
 (7 points)

a. Find the initial value of x(t)

(2 points)

b. Find the Inverse Laplace transform for *X*(*s*) (4 points)

c. Justify your answer to part **a** by finding the initial value in the time domain (1 point)

<u>Problem 3:</u> (7 points)

a. Write x(t) in terms of $\Pi(t)$ and $\Lambda(t)$ (2 points)

b. Find X(f) which is the Fourier transform of x(t) (2 points)

c. Find $X_P(f)$ which is the Fourier transform of $x_p(t)$. Note that $x_p(t)$ is the periodic extension of x(t). (2 points)

d. What are the differences between the spectra of x(t) and $x_p(t)$ (1 point)

1)

2)

(1 point)

<u>Problem 4:</u> (8 points) Let $R=1 \Omega$ and L=2 H

a. Write the differential equation relating y(t) to x(t) for the circuit shown in the figure. (2 points)

b. Rewrite the equation in the s-domain (Laplace transform)

c. Assuming the initial values are zeros, solve for the transfer function $H(s) = \frac{Y(s)}{X(s)}$ (1 point)

d. If the input is $x(t) = 5e^{-2t}u(t)$, find the output, y(t) (4 points)

Name: Serial #

Sec#

Name of Theorem		
1. Superposition $(a_1 \text{ and } a_2 \text{ arbitrary constants})$	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(f) + a_2 X_2(f)$
2. Time delay	$x(t-t_0)$	$X(f)e^{-j2\pi ft_0}$
3a. Scale change	x(at)	$ a ^{-1}X\left(\frac{f}{a}\right)$
b. Time reversal	x(-t)	X(-f) = X * (f)
4. Duality	X(t)	x(-f)
5a. Frequency translation	$x(t)e^{j\omega_0 t}$	$X(f-f_0)$
b. Modulation	$x(t) \cos \omega_0 t$	$\frac{1}{2}X(f-f_0) + \frac{1}{2}X(f+f_0)$
6. Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
7. Integration	$\int_{-\infty}^{t} x(t') dt'$	$(j2\pi f)^{-1}X(f) + \frac{1}{2}X(0)\delta(f)$
8. Convolution	$\int_{-\infty}^{\infty} x_1(t-t') x_2(t') dt'$	
		$X_1(f)X_2(f)$
	$= \int_{-\infty} x_1(t') x_2(t-t') dt'$	
9. Multiplication	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(f-f') X_2(f') df'$
		$=\int_{-\infty}^{\infty}X_1(f')X_2(f-f')df'$

 $\omega_0 = 2\pi f_0$; x(t) is assumed to be real in 3b.

TABLE 4-1

Fourier Transform Theorems^a

TABLE 4-2 Fourier Transform Pairs

Pair Number	x(t)	X(f)	Comments on Derivation
1.	$\Pi\left(\frac{t}{\tau}\right)$	$ au\sin au f$	Direct evaluation
2.	2W sinc 2Wt	$\Pi\left(\frac{f}{2W}\right)$	Duality with pair 1, Example 4-7
3.	$\Lambda\left(\frac{t}{\tau}\right)$	$ au\sin^2 au f$	Convolution using pair 1
4.	$\exp(-\alpha t)u(t),\alpha>0$	$\frac{1}{\alpha + j2\pi f}$	Direct evaluation
5.	$t \exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{(\alpha + j2\pi f)^2}$	Differentiation of pair 4 with respect to α
6.	$\exp(-\alpha t), \alpha > 0$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$	Direct evaluation
7.	$e^{-\pi(t/\tau)^2}$	$\tau e^{-\pi (f \tau)^2}$	Direct evaluation
8.	$\delta(t)$	1	Example 4-9
9.	1	$\delta(f)$	Duality with pair 7
10.	$\delta(t-t_0)$	$\exp(-j2\pi ft_0)$	Shift and pair 7
11.	$\exp(j2\pi f_0 t)$	$\delta(f-f_0)$	Duality with pair 9
12.	$\cos 2\pi f_0 t$	$\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)$	Exponential representation of
13.	$\sin 2\pi f_0 t$	$\frac{1}{2j} \delta(f-f_0) - \frac{1}{2j} \delta(f+f_0) \right\}$	cos and sin and pair 10
14.	u(t)	$(j2\pi f)^{-1} + \frac{1}{2}\delta(f)$	Integration and pair 7
15.	sgn t	$(j\pi f)^{-1}$	Pair 8 and pair 13 with superposition
16.	$\frac{1}{\pi t}$	$-j \operatorname{sgn}(f)$	Duality with pair 14
17.	$\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\lambda)}{t - \lambda} d\lambda$	$-j \operatorname{sgn}(f)X(f)$	Convolution and pair 15
18.	$\sum_{m=-\infty}^{\infty} \delta(t-mT_s)$	$f_s\sum_{m=-\infty}^{\infty}\delta(f-mf_s),$	Example 4-10
		$f_s = T_s^{-1}$	

Name	Operation in Time Domain	Operation in Frequency Domain
1. Linearity	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(s) + a_2 X_2(s)$
2. Differentiation	$\frac{d^n x(t)}{dt^n}$	$s^n X(s) - s^{n-1} x(0^-) - \cdots - x^{(n-1)}(0^-)$
3. Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda$	$\frac{X(s)}{s} + \frac{x^{(-1)}(0^-)}{s}$
4. s-shift	$x(t) \exp(-\alpha t)$	$X(s + \alpha)$
5. Delay	$x(t-t_0)u(t-t_0)$	$X(s) \exp(-st_0)$
6. Convolution	$x_1(t) * x_2(t) = \int_0^\infty x_1(\lambda) x_2(t-\lambda) d\lambda$	$X_1(s)X_2(s)$
7. Product	$x_1(t)x_2(t)$	$\frac{1}{2\pi i} \int_{s-is}^{s+j\infty} X_1(s-\lambda) X_2(\lambda) d\lambda$
8. Initial value (provided limits exist)	$\lim_{t\to 0^+} x(t)$	$\lim_{s \to \infty} sX(s)$
9. Final value (provided limits exist)	$\lim_{t\to\infty} x(t)$	$\lim_{s\to 0} sX(s)$
10. Time scaling	x(at), $a > 0$	$a^{-1}X\left(rac{s}{a} ight)$

TABLE 5-2	
Laplace Transfor	m Theorems

 TABLE 5-3

 Extended Table of Single-Sided Laplace Transforms

Signal	Laplace Transform	Comments on Derivation
1. $\delta^{(n)}(t)$	S^n	Direct evaluation with aid of (1-66)
2. 1 or <i>u</i> (<i>t</i>)	$\frac{1}{s}$	Direct evaluation
3. $\frac{t^n \exp(-\alpha t)u(t)}{n!}$	$\frac{1}{(s+\alpha)^{n+1}}$	Differentiation applied to pair 3, Table 5-1
4. $\cos \omega_0 t u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Example 5-1
5. $\sin \omega_0 t u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	Example 5-1
6. $\exp(-\alpha t) \cos \omega_0 t u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	s-shift and pair 4
7. $\exp(-\alpha t) \sin \omega_0 t u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	s-shift and pair 5
8. Square wave:	(****)	
$u(t) - 2u\left(t - \frac{T_0}{2}\right) + 2u(t - T_0) - \cdots$	$\frac{1}{s} \frac{1 - e^{-sT_0/2}}{1 + e^{-sT_0/2}}$	Example 5-5
9. $(\sin \omega_0 t - \omega_0 t \cos \omega_0 t) u(t)$	$\frac{2\omega_0^3}{(s^2+\omega_0^2)^2}$	Example 5-12, pair 5, and convolution
10. $(\omega_0 t \sin \omega_0 t) u(t)$	$\frac{2\omega_0^2s}{(s^2+\omega_0^2)^2}$	Pair 4 and convolution
11. $\omega_0 t \exp(-\alpha t) \sin \omega_0 t u(t)$	$\frac{2\omega_0^2(s+\alpha)}{[(s+\alpha)^2+\omega_0^2]^2}$	s-shift and pair 10
12. $\exp(-\alpha t)(\sin \omega_0 t - \omega_0 t \cos \omega_0 t)u(t)$	$\frac{2\omega_0^3}{[(s+\alpha)^2+\omega_0^2]^2}$	s-shift and pair 9

Good Luck, Dr. Ali Muqaibel