
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS ELECTRICAL ENGINEERING DEPARTMENT SEMESTER 122

EE 207 MAJOR EXAM II DATE: WEDNESDAY 20/04/2013 TIME: 7:00 - 8:30 PM

	Maximum Score	Score
Problem 1	16	
Problem 2	13	
Problem 3	11	
TOTAL	40	

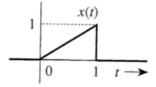
Problem 1:

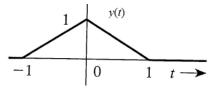

a) (3 marks) Using the Fourier Integral definition, find the Fourier Transform of the shown signal

b) (3 marks) A signal x(t), has the spectrum shown in the figure, Sketch the spectrum of the following signal.

$$x(t)(1+0.5e^{j8t})$$

 $x(t)(1+0.5e^{j8t})$ Show all important values on both amplitude and frequency axes.




c) (2 marks) Find the Inverse Fourier Transform of the following signal $X(\omega) = e^{-a|\omega|}$.

d) (4 marks) The Fourier transform of the triangular pulse x(t) shown is expressed as

$$X(\omega) = \frac{1}{\omega^2} \left(1 + e^{-j\omega} + j\omega e^{-j\omega} \right)$$

 $X(\omega) = \frac{1}{\omega^2} \left(1 + e^{-j\omega} + j\omega e^{-j\omega} \right)$ Using this information and the Fourier transform properties, find the Fourier transform of y(t) shown in the figure.

(4 marks) An input signal, $x(t) = 4e^{-3t}u(t)$, is applied to a system whose impulse response is $h(t) = 5e^{-3t}u(t)$. Use the Fourier transform to find the out of the system, y(t).

Problem 2:

- a) A signal x(t) is given by: $x(t) = 2 + 4\cos(6\pi t) 8\sin(15\pi t)$
 - i. (1 mark) Determine the fundamental frequency ω_0 of the signal x(t).
 - ii. (3 marks) Determine the Complex Fourier Series coefficients, C_{kx} , of x(t)

iii. (2 marks) Determine the magnitudes and phases of the coefficients C_{kx}

iv. (1 mark) Plot the magnitude spectrum of x(t)

v. (3 marks) x(t) is passed through a lowpass filter with frequency response given by:

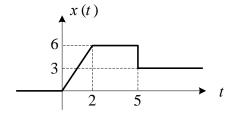
$$H(\omega) = \frac{4}{3 + j\omega}$$

Determine the Complex Fourier Series coefficients for the output signal, C_{ky} , of y(t).

b) (3 marks) The Complex Fourier Series coefficients of a periodic signal, x(t), are given as:

$$C_0 = 5$$
, and $C_k = \frac{j10}{2\pi k}$, $k = \pm 1, \pm 2, ...$

 $C_0=5$, and $C_k=\frac{j10}{2\pi k}$, $k=\pm 1,\pm 2,...$ The signal x(t) is transformed into y(t) using the following expression:


$$y(t) = 2x(3t) + 4$$

Determine the Complex Fourier Series coefficients of y(t), C_{ky}

Problem 3:

- i. (2 marks) Laplace transform of the signal x(t) is given by $X(s) = 10se^{-3s}$. Find the Laplace transform Y(s) of the signal y(t) = tx(t).
- ii. (3 marks) The Laplace transform of the signal x(t) is given by $X(s) = \frac{2s-1}{s^2+6}$. Find the Laplace transform Y(s) of the signal $y(t) = 3e^{-5t}x(0.25t)$.

iii. (4 marks) Find the Laplace transform of the signal x(t) shown in the figure.

iv. (2 marks) Find the inverse Laplace transform of $X(s) = \frac{300e^{-2s}}{s^2 + 100}$.