KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS ELECTRICAL ENGINEERING DEPARTMENT
 SEMESTER 122

EE 207 MAJOR EXAM II DATE: WEDNESDAY 20/04/2013

TIME: 7:00-8:30 PM

ID:	NAME: Key	SER:	SECTION:

	Maximum Score	Score
Problem 1	16	
Problem 2	13	
Problem 3	11	
TOTAL	40	

Problem 1:

a) (3 marks) Using the Fourier Integral definition, find the Fourier Transform of the shown signal

b) (3 marks) A signal $x(t)$, has the spectrum shown in the figure, Sketch the spectrum of the following signal.

$$
x(t)\left(1+0.5 e^{j 8 t}\right)
$$

Show all important values on both amplitude and frequency axes.

c) (2 marks) Find the Inverse Fourier Transform of the following signal $X(\omega)=e^{-a|\omega|}$.
d) (4 marks) The Fourier transform of the triangular pulse $x(t)$ shown is expressed as

$$
X(\omega)=\frac{1}{\omega^{2}}\left(1+e^{-j \omega}+j \omega e^{-j \omega}\right)
$$

Using this information and the Fourier transform properties, find the Fourier transform of $y(t)$ shown in the figure.

e) (4 marks) An input signal, $x(t)=4 e^{-3 t} u(t)$, is applied to a system whose impulse response is $h(t)=5 e^{-3 t} u(t)$. Use the Fourier transform to find the out of the system, $y(t)$.

Problem 2:

a) A signal $x(t)$ is given by: $x(t)=2+4 \cos (6 \pi t)-8 \sin (15 \pi t)$
i. (1 mark) Determine the fundamental frequency ω_{0} of the signal $x(t)$.
ii. (3 marks) Determine the Complex Fourier Series coefficients, $C_{k x}$, of $x(t)$
iii. (2 marks) Determine the magnitudes and phases of the coefficients $C_{k x}$
iv. (1 mark) Plot the magnitude spectrum of $x(t)$
v. (3 marks) $x(t)$ is passed through a lowpass filter with frequency response given by:

$$
H(\omega)=\frac{4}{3+j \omega}
$$

Determine the Complex Fourier Series coefficients for the output signal, $C_{k y}$, of $y(t)$.
b) (3 marks) The Complex Fourier Series coefficients of a periodic signal, $x(t)$, are given as:

$$
C_{0}=5, \text { and } C_{k}=\frac{j 10}{2 \pi k}, \quad k= \pm 1, \pm 2, \ldots
$$

The signal $x(t)$ is transformed into $y(t)$ using the following expression:

$$
y(t)=2 x(3 t)+4
$$

Determine the Complex Fourier Series coefficients of $y(t), C_{k y}$

Problem 3:

i. (2 marks) Laplace transform of the signal $x(t)$ is given by $X(s)=10 s e^{-3 s}$. Find the Laplace transform $Y(s)$ of the signal $y(t)=t x(t)$.
ii. (3 marks) The Laplace transform of the signal $x(t)$ is given by $X(s)=\frac{2 s-1}{s^{2}+6}$. Find the Laplace transform $Y(s)$ of the signal $y(t)=3 e^{-5 t} x(0.25 t)$.
iii. (4 marks) Find the Laplace transform of the signal $x(t)$ shown in the figure.

iv. (2 marks) Find the inverse Laplace transform of $X(s)=\frac{300 e^{-2 s}}{s^{2}+100}$.

