King Fahd University of Petroleum & Minerals

Electrical Engineering Department EE207: Signals & Systems (121)

Final Exam

Serial Number

Ver. 2

Jan. 3rd, 2013 7:00-9:30PM

Name:_____

ID#_____

Question	Mark
1	/30
2	/10
3	/15
4	/15
5	/15
6	/15
Total	/100

Instructions:

- 1. This is a closed-books/notes exam.
- 2. The duration of this exam is one and half hours.
- 3. Read the questions carefully. Plan which question to start with.
- 4. LABEL ALL SIGNIFICANT VALUES ON BOTH AXES OF ANY SKETCH
- 5. Work on your own.
- 6. Strictly no mobile phones are allowed. Do not even look at them !

Good luck

Mark	sec	Timing	Instructor
	1	<u>UT8:30</u>	Dr. M. Landolsi
	3	<u>UT 10:00</u>	Dr. Ali Al-Shaikhi
	4	<u>SMW10:00</u>	Dr. Azzedine Zerguine
	5	<u>SMW 11:00</u>	Dr. Ali Muqaibel

<u>Problem 1:</u> [32pts] Choose the best answer. Fill in the table with CLEAR answers

Question	1	2	3	4	5	6	7	8
Answer								
								_
Question	9	10	11	12	13	14	15	
Answer								

1) Which of the following signal has <u>finite</u> energy? Note: r(t) = tu(t)a. u(t)-u(t-5)

- b. *r*(*t*)
- c. r(t)-r(t-2)
- d. $\sin(3t)$
- e. u(t)
- 2) Which of the following systems (defined by their input/output relations) is causal?
 - a. y(t) = x(-2t)
 - b. y(t) = x(t+5) 5
 - c. $y(t) = x(t^{1/2})$
 - d. y(t) = x(t) + t
 - e. $y(t) = x(t^2)$

3) The integral $\int_{-\infty}^{5} e^{-4t^2} \cos(t^2) \delta(t-10) dt$ is equal to: a. $e^{-400}\cos(100)\delta(t-10)$ b. $e^{-400}\cos(100)$ c. $\delta(t-10)$ d. $e^{-400} \sin(100)$ e. 0

4) The step response of a system with impulse response h(t) = u(t) - u(t-5) is:

- a. $\delta(t) \delta(t-5)$
- b. 5 *r*(*t*)
- c. r(t)-r(t-5)
- d. *u*(*t*)
- e. 0

5) The system defined by $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$ is

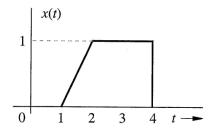
- a. linear and time-invariant.
- b. linear and non-causal.
- c. non-linear and time-invariant.
- d. non-linear and time varying.
- e. memory-less (static).

- 6) The signal $x(t) = e^{j^{2t}}$ is
 - a. a power signal with power equal to 0
 - b. a power signal with power equal to 1
 - c. neither power nor energy signal
 - d. an energy signal with energy equal to 1
 - e. an energy signal with energy equal to 0
- 7) Determine the Fourier transform of $x(t) = e^{-|t|}$

a.
$$X(\omega) = \frac{1}{1+j\omega}$$

b. $X(\omega) = \frac{1}{1-j\omega}$
c. $X(\omega) = \frac{2}{1+\omega^2}$
d. $X(\omega) = \frac{1}{1+\omega}$
e. $X(\omega) = \frac{1}{1-\omega}$

8) The inverse Fourier Transform of $X(\omega) = \frac{1}{2}rect\left(\frac{\omega-10}{2}\right) + \frac{1}{2}rect\left(\frac{\omega+10}{2}\right)$ is


a. $x(t) = \operatorname{sinc}(t) \cos(10t)$ b. $x(t) = \operatorname{sinc}(t) \cos(5t)$ c. $x(t) = \operatorname{sinc}(2t) \cos(10t)$ d. $x(t) = \frac{\sin t}{\pi t} \cos(5t)$ e. $x(t) = \frac{\sin t}{\pi t} \cos(10t)$

9) The inverse Laplace transform of $\frac{24}{s(s+8)}$ is

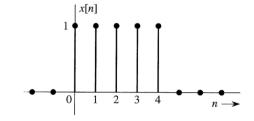
a. $3[1 - e^{-8t}]u(t)$ b. $6[4 - 3e^{-8t}]u(t)$ c. $24u(t) + 6e^{-8t}u(t)$ d. $\delta(t) + 3u(t)$ e. $24 + e^{-8t}u(t)$

10) Find the Laplace transform of x(t) shown in the figure.

a.
$$X(s) = \frac{1}{s^2}e^{-s} + \frac{1}{s^2}e^{-2s} + \frac{1}{s}e^{-4s}$$

b. $X(s) = \frac{1}{s^2}e^{-s} - \frac{1}{s^2}e^{-2s}$
c. $X(s) = \frac{1}{s^2}e^{-s} + \frac{1}{s^2}e^{-4s} - \frac{1}{s}e^{-2s}$
d. $X(s) = \frac{1}{s^2}e^{-s} - \frac{1}{s^2}e^{-2s} - \frac{1}{s}e^{-4s}$
e. $X(s) = \frac{1}{s^2}e^{-s} - \frac{1}{s^2}e^{-4s}$

11) What is the minimum sampling frequency so the signal can be reconstructed correctly for $x(t) = \sin 2\pi t + \cos 8\pi t$,


- a. 10 Hz
- b. 2 Hz
- c. 4 Hz
- d. 6 Hz
- e. 8 Hz

12) For a sampled signal, aliasing (spectrum overlapping) is a phenomenon that results when:

- a. we over-sample (sample at very high rate).
- b. we transfer the signal to the z-domain.
- c. we sample below Nyquist rate.
- d. we use the sifting (sampling) property of delta functions.
- e. the signal is sampled at 3 times the highest frequency.

13) Find the z-transform of x[n] shown in the figure

a. $X(z) = 1 + \frac{1}{z} + \frac{1}{z^2}$ b. $X(z) = \frac{z^4 + z^3 + z^2 + 2z}{z^4}$ c. $X(z) = z^{-2} + z^{-3} + z^4$ d. $X(z) = \frac{z}{z-1}(1-z^{-5})$ e. $X(z) = 1 + z^{-1} + 2z^{-2} + 3z^{-3} + 4z^{-4}$

14) Convolving x[n] with itself, the output is y[n]. The value of y[3] is equal to:

- a. -4 b. -2 c. 0 d. 2
- e. 4

15) The inverse z-transform of $\frac{1}{(z-1)(z+0.5)}$ is:

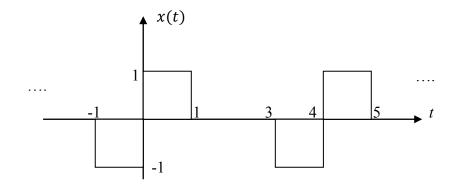
a.
$$-2\delta[n] + \left[\frac{2}{3} + \frac{4}{3}(-0.5)^n\right]u[n]$$

b. $\left[\frac{2}{3} + \frac{4}{3}(-0.5)^n\right]u[n]$
c. $\left[\frac{4}{3} + \frac{2}{3}(-0.5)^n\right]u[n]$
d. $\left[\frac{2}{3} + \frac{4}{3}(0.5)^n\right]u[n]$
e. $-2\delta[n]$

Problem 2:

The impulse response of an LTI system is given by, $h(t) = \frac{1}{2}e^{-\frac{t}{2}}u(t)$

a) Find the step response s(t) [i.e., the response to a unit step input u(t)].


b) Express x(t), shown in the figure, in terms of step functions.

c) Find the LTI system's response for this input signal *x*(*t*).

Problem 3:

Consider the <u>periodic</u> signal x(t) shown below:

a. Specify the fundamental frequency ω_0 of x(t), and indicate if x(t) is even, odd or neither.

$$\omega_0 = x(t)$$
 is

b. Find the Exponential Fourier Series coefficients C_k of x(t), and verify that they are purely imaginary.

c. Plot the 2-sided amplitude and phase spectra of x(t) (up to the 5th harmonic).

Problem 4:

A circuit is described by the following differential equation: dy(t)

$$\frac{dy(t)}{dt} + 2y(t) = 2x(t)$$

a) Show that the transfer function of the circuit is given by: $H(\omega) = \frac{2}{2+j\omega}$

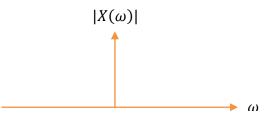
b) Find and sketch the amplitude response of $H(\omega)$

c) Find and sketch the phase response of $H(\omega)$

d) Find the output y(t) when the input is $x(t) = e^{j 2t}$

e) What does the output represent compared to the input

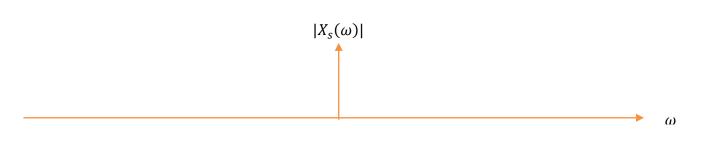
Problem 5:


Consider the following signal which is sampled using ideal impulse train at a rate of 10 samples/second.

$$x(t) = 5 + 4\cos(8\pi t) + 6\cos(6\pi t)$$

a) For the first 3 samples fill in the following table:

	Sampling Time	Sampled Value
n	nT _s	$x(nT_s)$
0		
1		
2		


b) Find and sketch $X(\omega)$, which represents the frequency spectrum of x(t). Show all important values on both axes.

 $X(\omega) =$

c) Find <u>and</u> sketch $X_s(\omega)$, which represents the spectrum of the sampled signal $x_s(t)$.

Your sketch should show the range of frequencies $-30\pi < \omega < 30\pi$ rad/sec. Show all important values on both axes.

 $X_s(\omega) =$

d) What is the bandwidth of the ideal low pass filter required to reconstruct x(t) from $x_s(t)$?

Problem 6:

Consider a discrete LTI system has an input x[n] and output y[n]. When the input to the system is $x[n] = \left(\frac{1}{5}\right)^n u[n]$, the output was found to be $y[n] = \frac{5}{2} \left(\frac{1}{2}\right)^n u[n] - \frac{3}{2} \left(\frac{1}{5}\right)^n u[n]$.

a) Find the transfer function, H(z), of the system.

b) Find the output of the system y[n] in closed form when the input is $x[n] = \left(\frac{1}{2}\right)^n u[n]$.