King Fahd University of Petroleum and Minerals

Department of Electrical Engineering EE 205 Circuit II,

Major Exam II
Saturday, 23 May 2009
6:45-8:45 PM
Name: KEY
ID: \qquad
Serial \#: \qquad
Section: \qquad
Instructor: \qquad

Problem	Score	Out of
1		14
2		10
3		10
4		14
Total		48

Good luck,
Dr. Samir Al-Ghadhban, Dr. AbdelMalek Zidouri, Dr. Adnan Al-Andalusi, and Dr. Ali Muqaibel

Grading Guideline

Problem 1: [14 points]
A. Two parallel RLC Circuits have the same resonant frequency

Circuit 1: has quality factor, $Q_{1}=30, B W_{1}=10 \mathrm{kHz}$
$\rightarrow 1$ point for the relation
$\rightarrow 1$ point for the final
(2 points) answer

Circuit 2: has quality factor, $\mathrm{Q}_{2}=20, \mathrm{BW}_{2}=$? Find the unknown bandwidth
$Q=\frac{\omega_{r}}{B W} \Rightarrow w_{r}=Q \cdot B W$ since the two circuit have the same resonance Frequency $\quad \omega_{r_{1}}=\omega r_{r_{2}} \Rightarrow$

$$
Q_{1} \cdot B W_{1}=Q_{2} \cdot B W_{2} \Rightarrow B W_{2}=\frac{Q_{1} \cdot B W_{1}}{Q_{2}}=\frac{30}{20} 10 \mathrm{KH}_{3}=15
$$

B. Find the resonance frequency for the given circuit in Hz ,

Let $L=1 \mathrm{H}, \mathrm{C}=10.13 \mathrm{pF}, R_{1}=3$ Ohms, $R_{2}=2$ Ohms.
(6 points)
Low or No credit if you do not explain your steps
Z_{1} is made of $R_{2} \| L \quad 1$ point

$$
Z_{1}=\frac{J \omega L R_{2}}{J \omega L+R_{2}}=\frac{J 2 \omega}{J \omega+2}
$$

$\sum_{\text {substitute }} R_{2}$ FL
Z_{2} is made up of $Z_{1}+R_{1}$

$$
=3+\frac{J 2 w}{J w+2}=\frac{3 J w+6+J 2 w}{J w+2}
$$

$Y_{\text {total }}$ is made up of $Y_{2} \| C$

$$
Y_{\text {total }}=J \omega c+\frac{2+J \omega}{6+J 5 \omega} \cdot \frac{6-J 5 \omega}{6-J 5 \omega}
$$

multiply by the conjugate

to find the resonance frequency
Imaginary $\left(Y_{\text {ton k }}\right)=0 \quad \omega \leftarrow \omega$,

$$
=\frac{6+J 5 \omega}{2+J \omega}
$$

$$
Y_{2}=\frac{1}{Z_{2}}=\frac{2+J \omega}{6+J 5 \omega}
$$

$\underbrace{0.5 p}_{x>x=x^{2}}$

$$
\begin{aligned}
& f_{f} c+\frac{6 w_{f}-10 w_{f}}{25 \omega_{r}^{2}+36}=0 \quad \text { divide } \omega_{r}\left(\omega_{r} \neq 0\right) \\
& c-\frac{4}{25 \omega_{r}^{2}+36}=0 \\
& \Rightarrow \quad 25 \omega_{r}^{2}+36=\frac{4}{c} \\
& f_{f} c+\frac{6 w_{f}-10 w_{f}}{25 \omega_{r}^{2}+36}=0 \quad \text { divide } \omega_{r}\left(\omega_{r} \neq 0\right) \\
& \Rightarrow \quad w_{r}^{2}=\frac{1}{25} \frac{\left(\frac{4}{c}-36\right)}{\frac{4}{c}-36}= \\
& \omega_{r}=\frac{1}{5} \sqrt{\frac{4}{c}-36}=125.62 \mathrm{k} \text { radsec. } \\
& \omega_{r}=\frac{1}{5} \sqrt{\frac{4}{c}-36}=125.62 \mathrm{k} \text { radsec. } \\
& f_{r}=\frac{\omega_{r}}{2 \pi}=20 \mathrm{KH}_{3}=20000 \mathrm{H}_{3} \\
& 1 \text { point } \\
& 1 \text { probes }
\end{aligned}
$$

1.C

Show that the Quality factor at resonance of the parallel RLC circuit is equal to $Q=\omega_{r} R C$,
hint $\left(Q=2 \pi \frac{\left[w_{C}(t)+w_{L}(t)\right]_{\max }}{P_{R} T}\right) \quad$ (6 points)

No credit if you do not explain your steps

- Let $i(t)=I \cos \omega_{r} t$
then the Parallel Voltage is
(1)

$$
N(t)=R i(t)=R I \cos w_{\gamma} t
$$

Thus, the energy stored in the capacitor in

$$
\begin{aligned}
W_{c}(t) & =\frac{1}{2} C v^{2}(t) \\
& =\frac{1}{2} C R^{2} I^{2} \cos ^{2} w_{1} t
\end{aligned}
$$

-The inductor current in

$$
\begin{aligned}
I_{L} & =\frac{R I L 0^{\circ}}{w_{r} L \angle 90^{\circ}}=\frac{R I}{w_{r} L} L-90^{\circ} \\
\Rightarrow \tau_{L}(t) & =\frac{R I}{w_{r} L} \cos \left(w_{r} t-90^{\circ}\right) \\
& =\frac{R I}{w_{r} L} \sin w_{r} t
\end{aligned}
$$

\Rightarrow Energy stored in the
inductor in $\frac{1}{2} L i^{2} \stackrel{02}{\underline{2}}$
(A) — $\quad w_{L}(t)=\frac{1}{2}\left(R^{2} I^{2} \sin ^{2} w_{r} t^{.45}\right.$

$$
w_{C}(t)+w_{L}(t)=\frac{1}{2} C R^{2} I^{2} \cos ^{2} w_{r} \left\lvert\, \begin{array}{cl}
1 \mathrm{p}: & \text { Voltage on the } \\
0 . S_{p}: & \text { Energy on }
\end{array}\right.
$$

$+\frac{1}{2} C R^{2} I^{2} \sin ^{2} w_{r} t$ ip: Current or the coil.
$=\frac{1}{2} C R^{2} I^{2} \quad 0.5$: Energy stored ion coll.
(1)- $\left[w_{c}(t)+w_{L}(t)\right]_{\max }=\frac{1}{2} C R^{2} I^{2}$

- The pow absorbed by the resistor in

$$
\begin{align*}
P_{R} & =\frac{1}{2} R I^{2} \tag{1}\\
\Rightarrow P_{R} T & =\frac{1}{2} I^{2} R \\
& =\frac{1}{2} I^{2} R\left(\frac{2 \pi}{w_{r}}\right) \\
& =\frac{\pi I^{2} R}{w_{r}}
\end{align*}
$$

-00

$$
Q=\frac{2 \pi\left(\frac{1}{2} C R^{2} I^{2}\right)}{\pi I^{2} R / w_{r}}
$$

$$
\begin{equation*}
Q=w_{r} R C \tag{D}
\end{equation*}
$$

Gradin Guidelines.
1 p : Voltage on the capacitor.

1p: max Energy strand.
1 p: power desifacted in a period in R.
1,: Simplifying Q to the requited Expression.

Problem 2: [10 points]

Consider the following circuit:

a) Find the expression of the transfer function $V_{0}(s) N_{s}(s)$ [4 points]

$$
\begin{aligned}
\frac{V_{0}}{V_{s}} & =\left(\frac{411\left(s+\frac{2}{s}\right)}{1+\left\{411\left(s+\frac{2}{s}\right)\right\}}\right)^{1 p^{t}} \\
& =\frac{\frac{4 \times(s+2 / s)}{4+s+2 / s}}{1+\frac{4 \times(s+2 / s)}{4+s+2 / s}}
\end{aligned}
$$

b) Find the poles and zeros of this transfer function, and give their plot in the complex splane (use appropriate notation) [2 points]

natural

c) What is the type of the response in the time domain? [1 points]
\& decaying (damped) siniof the form $A_{1} e^{(-0.4+j 1.36) t}+A_{2} e^{(-0.4+j 1.30 t)}$ or $B_{1} e^{-0.4 t} \cos 1.36 t$-0.4t C stable! d) Suppose the input voltage is $v_{s}(t)=10 e^{-t} \cos \left(2 t+30^{\circ}\right) \mathrm{V}$. Find the step forced steady state output response $v_{0}(t)$. [3 points]

$$
\begin{aligned}
& v_{s}(t)=\frac{10 e^{-t} \cos \left(2 t+30^{\circ}\right) \rightarrow V=10 \angle 30}{0.25 p r} \\
& s=-1+2 j 0.25 p r \\
& V_{0}=\frac{4(-1+2 j)^{2}+8}{5(-1+2 j)^{2}+4(-1+2 j)+10} \times 10 \angle 30^{\circ} \\
& =\frac{-4-16 j}{-9-19 j} \times 10 \angle 30^{\circ} \\
& \cong 1.1 \angle 22.8^{\circ} \times 10130^{\circ}
\end{aligned}
$$

Problem 3: [10 points]
For the transformer in the figure,

3.1 If the coefficient of coupling (k) is equal to 0.8 ,
a) Find the mutual inductance M [1 point]

$$
M=k \sqrt{L_{1} L_{2}} \equiv \widehat{\sigma}
$$

$$
M=0.8 \sqrt{(0.025)(0.1)}=40 \mathrm{mH} \mid 0.5
$$

b) Find the turn ratio N_{2} / N_{1}, assuming that the two coils have the same permeance. point]

c) Find the energy stored in the system when $i_{1}=-10 \mathrm{~A}, i_{2}=15 \mathrm{~A}$ [3 point]
(1)

$$
\begin{aligned}
W & =\frac{1}{2} L_{1} \tau_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}+M i_{1} i_{2} \\
& =\frac{1}{2}(0.025)(-10)^{2}+\frac{1}{2}(0.1)(15)^{2}+(0.04) \frac{(-10)(15)}{1}
\end{aligned}
$$

3.2 Find the value of k that makes the mutual inductance $M=112 \mathrm{mH}$ (justify your answer) [2 point] $M=k \sqrt{L_{1} L_{2}}=k(50) \mathrm{mH} \Rightarrow k$ should be 2.24
However since $\frac{0 \leqslant k \leqslant 1}{1} \Rightarrow \frac{\text { we cant have a mutual inductance }=11}{1}$ the energy stored in the systems equals zero. [3 point]

$$
\begin{aligned}
& \text { when } k=1 \Rightarrow M=1 \sqrt{(0.025)(0.1)}=\frac{50 m A}{0(1)} i_{1}=10 \mathrm{~A} \\
& \Rightarrow 50 i_{2}^{2}+500 i_{2}+1250=0 \\
& \Rightarrow i_{2}^{2}+10 i_{2}+25=0 \\
& \Rightarrow i_{2}=\frac{-10 \pm \sqrt{10^{2}-4(25)}}{2} \\
& i_{2}=-5 A
\end{aligned}
$$

Problem 4: [14 Points]
For the circuit shown in the Figure,
Let $Z_{1}=60-j 100 \Omega, Z_{2}=\mathbf{3 0}+j 40 \Omega$, and $Z_{L}=80+j 60 \Omega$,

A. Calculate the impedance seen by the ideal source $\left(Z_{\text {int }}=\frac{V_{s}}{I_{1}}\right)$ [3 points] we can do (B) first

$$
\begin{aligned}
Z_{\text {int }} & =Z_{1}+j 20+Z_{r} \\
& =60-j 100+j 20+z_{r} \\
& =60-j 80+0.0868-j 0.114 \\
& =60.0868-j 80.114
\end{aligned}
$$

B. Find the reflected Impedance $\left(Z_{r}\right)$ as seen from the primary side. [3 points]

$$
\begin{aligned}
Z_{r} & =\frac{\omega^{2} M^{2}}{\mid Z_{22} r^{2}} z_{22}^{*}, w M=5 \\
Z_{r} & =\frac{(5)^{2}}{31700}(110-j 140) \\
& =0.0868-j 0.114 \Omega \\
& =
\end{aligned}
$$

C. Find the mesh currents \boldsymbol{I}_{1} and $\boldsymbol{I}_{\mathbf{2}}$.
[4 points]

$$
I_{1}=\frac{V_{s}}{Z_{\text {int }}}=\frac{50 \angle 60^{\circ}}{Z_{\text {in }}}
$$

By KVL at bop "secondary.

$$
\begin{aligned}
& I_{2} Z_{22}-55 I_{1}=0 \\
\Rightarrow & I_{1}=\frac{I_{2} Z_{22}}{5 \mathrm{~J}} \\
4 & I_{2}=\frac{55 I_{1}}{Z_{22}}=\frac{5190^{\circ} I_{1}}{178.05151 .843^{\circ}} \\
& =0.0141151 .287^{\circ} \mathrm{A}
\end{aligned}
$$

C. Calculate the power consumed by the load $\mathbf{Z}_{\mathrm{L} .}$ [2 points]

Assuming the given voltage is RMS.

$$
\begin{aligned}
I^{2} R & =(0.014)^{2}(80) \\
& =15.68 * 10^{-3} \text { watts }
\end{aligned}
$$

if the given voltang is amplitude

$$
\begin{aligned}
P & =\frac{1}{2} I^{2} R \\
& =\frac{1}{2} I^{2} R=7.84 * 10^{-3} \text { wats }
\end{aligned}
$$

D. If the given circuit is shown for a radian frequency of $5 \mathrm{rad} / \mathrm{sec}$, find the mutual inductance (M) and the coupling coefficient (k). [2 points]

$$
\begin{aligned}
& J \omega M=j 5 \\
& \Rightarrow \omega M=5 \quad \Rightarrow M=\frac{5}{5}=1 \quad H
\end{aligned}
$$

Similarly $J \omega L=j 20 \Rightarrow L_{1}=4 H$

$$
J w L_{2}=, 40 \Rightarrow L_{2}=8 \mathrm{H}
$$

$$
M=K \sqrt{L_{1} L_{2}} \Rightarrow K=\frac{1}{\sqrt{4.8}}=0.1768
$$

