King Fahd University of Petroleum & Minerals

Electrical Engineering Department EE205: Electric Circuits II (031)

203. Electric Circuits II (03

Major Exam I

Oct. 22, 2003 7:30PM-9:00PM, Building 19-416

Name:	ID#	Sec. ()01 ()02

Q1. (4 Points: Short Questions)

- a) What are the advantages of using capacitor banks to supply the magnetizing vars for the inductive loads? (mention two) (1 point)
- b) An amplifier circuit is supplied by a dc source that has a value of ± 5 V, the amplifier has a voltage gain of 100, what is the output voltage? If the input voltage is 10mV, -100mV? (1 point)
- c) We would like to design an RLC circuit that would never exceed its final value. What type of response should we design for? (Overdamped, Critically damped, Underdamped) (1 point)
- d) In a balanced three-phase circuits the power is invariant with time. Is this good or bad for motors ? Explain (no more than three lines) (1 point)

Q2. (10 Points)

A balanced three-phase Δ -connected load has an impedance of $480+j135 \ \Omega/\emptyset$. The load is connected to the Y connected ideal source through a three phase line that has an impedance of $1+j2 \ \Omega/\emptyset$. The voltage at the terminal of the load is 13.8 kV. The phase sequence is negative. Use V_{AB} as the reference

- a) Calculate the three phase currents of the load. (1.5 points)
- b) What is the load power factor? (1point)
- c) Calculate the total load real and reactive power. (2 points)
- d) Calculate the three line currents (1.5 points)
- e) Find the magnitude of the line voltage at the sending end of the line (2 **points**)
- f) Find the total loss taken by the line, and the percentage efficiency of the distribution line with respect to average power (2 points)

Q3. (10 Points)

The switch in the circuit below has been in position **a** for a long time. At t=0, the switch moved instantaneously to position **b**. Find

- a) $v_o(0^-)$, $i_o(0)$, $v_c(0)$ (1.5 points)
- b) $dv_c(0^+)/dt$, $di_o(0^+)/dt$, $v_o(0^+)$ (1.5 points)
- c) $\alpha, \omega_0, s_1, s_2$ and type of response for $t \ge 0$ (3 points)
- d) $v_c(t)$ for $t \ge 0$ (3 points)
- e) How can we find $i_o(t)$ for $t \ge 0$, from $v_c(t)$? write down the relation (do not carry out the solution) (0.5 point)
- f) How can we find $v_o(t)$ for $t \ge 0$, from $v_c(t)$ and $i_o(t)$? write down the relation (do not carry out the solution) (0.5 point)

Q4. (6 Points)

- a) Write the matrix state equation for the circuit shown in the figure (5 points)
- b) Use Euler's method (Numerical analysis) to find approximate value for i_1 at t=0.001s, use $\Delta t=0.001$ s, assume $i_1(0)=0.9$ A, $i_2(0)=0.2$ A, $v_c(0)=10$ V, and $v_s(0)=30$ V, (1 point)

Good luck Dr. Ali Muqaibel