King Fahd University of Petroleum \& Minerals
Electrical Engineering Department
EE205: Electric Circuits II (031)

Name:	KEY	ID\#

The magnitude of the phase voltage of an ideal balanced three-phase Y-connected source is 4800 V . The source is connected to a balanced Y-connected load by a distribution line that has an impedance of $1+j 8 \Omega / \varnothing$. The load impedance is $95+j 20$ Ω / \varnothing. The phase sequence of the source is \boldsymbol{p}^{∞} stine. Use the a-phase voltage source as 2 the reference.
a) Draw the single-phase equivalent circuit. (show details)

b) Find the magnitude and phase of the three line currents.

$$
I_{a A}=\frac{4800 L 0}{96+\mathrm{J}^{28}}=\frac{4800 L 0}{100 \angle 16.26}=48.0 L^{-16.26} \mathrm{~A}
$$

Because of the negative sequence

$$
\begin{aligned}
& I_{b B}=48.01-136.26^{\circ} \\
& I_{C C}=48.01103 .74^{\circ} \mathrm{A}
\end{aligned}
$$

c) Find the magnitude and phase of the three line voltages at the source.

$$
\begin{aligned}
& \text { c) Find the magnitude and phase of the three line voltages at the source. } \\
& V_{a n}=4800 \angle 0^{\circ} \mathrm{V} \quad V_{b n}=4800 \angle-120^{\circ} \mathrm{V}, V_{c n}=4800 \angle 120^{\circ} \mathrm{V} \\
& V_{a b}=\sqrt{3} \angle 30^{\circ} V V_{a n}=8313.84 \angle 30^{\circ} \mathrm{V} \\
& V_{b c}=8313.84 \angle-90^{\circ} \mathrm{V} \\
& V_{c d}=8313.84 \angle 150^{\circ} \mathrm{V}
\end{aligned}
$$

